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A B S T R A C T   

Nowadays, owing to their potential applications in next-generation self-powered electronic devices, such as 
energy-harvesting smart garments from body movements and roll-up displays, electrochemical energy storages 
are enjoying considerable interest. Nonetheless, the development of such technologies has been hindered due to 
the rarity of high-efficacy electrodes with specific electrochemical performance. Amongst prospective electrodes, 
researchers have investigated 2D flexible and lightweight materials which have unique physiochemical attributes 
such as high conductance, high surface metal diffusivity, a hydrophilic surface and mechanical strength. Within 
this piece of research, a 2D orthorhombic di-boron di-nitride monolayer (o-B2N2ML), which is a boron nitride 
allotrope, was investigated. Moreover, several determining electronic chemical factors were investigated, such as 
theoretical capacity, equilibrium voltage and binding strength. Interestingly, the Mg-ion battery had a specific 
capacity of up to 1125 mAh.g− 1. Also, the diffusion of Mg-ions was accelerated due to the presence of a o-B2N2 
ring with a diffusion barrier (DB) of 0.26 eV. The low OCV and the low DB of the o-B2N2ML demonstrate that it 
can be used for practical purposes with long service life and fast rates of charge and discharge. The results also 
indicated the possible use of the o-B2N2ML as an anode material with high efficiency in MIBs.   

1. Introduction 

Recent years have witnessed the tremendous impact of energy stor-
age systems, such as large power grids, hybrid vehicles and portable 
devices, on the daily lives of people [1–8]. Owing to their light weight, 
long cycle life and high energy storage efficiency, the energy storage 
market has been dominated by rechargeable lithium-ion batteries (LIBs) 
[9–15]. Nonetheless, the scarcity of lithium, poor safety and low theo-
retical specific capacities have limited the development and commer-
cialization of LIBs [16–21]. As a solution, researchers have investigated 
alternative batteries which do not use lithium as the anode material for 
accommodating high energy. The newly introduced substitutes for LIBs, 

such as potassium-ion batteries (KIBs) and sodium-ion batteries (NIBs), 
are eco-friendlier and greener. It should be mentioned that divalent ion- 
based batteries (such as Zn2+, Ca2+ or Mg2+) are more suitable than 
monovalent ion-based batteries (such as K+ and Na+) in terms of their 
capacity since they can transfer two electrons [22–30]. Herein, calcium- 
ion batteries (CIBs), MIBs, KIBs and NIBs are collectively called non- 
lithium-ion batteries (NLIBs) [31–33]. These batteries have abundant 
raw materials on earth and their purification is easy. Nevertheless, the 
radius of Ca, Mg, K and Na ions is larger than the radius of Li ion and 
they have a heavier mass. This raises questions regarding the usability of 
traditional electrodes [34–37]. According to the literature, electrolyte 
and electrode materials (EMs) are considered important in determining 
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the electronic and chemical performance of NLIBs unlike LIBs [38]. Until 
now, researchers have investigated and found new materials, such as 
Prussian blue frameworks [39], layered TMO [40] and olivine FePO4 
[41] with superior cycling performance, high capacity and large inter-
stitial spaces, which can be used as potential cathode materials. Despite 
a large body of research on developing cathode materials, little research 
can be found on developing anode materials, which is limited to VA and 
VIA group element compounds and C-based materials [42,43]. Unfor-
tunately, anode materials which can be used effectively in LIBs cannot 
be used in NLIBs. For example, the electrochemical activity of graphite 
for non-Li ions, which is commonly used in commercial LIBs, is low [44]. 
Therefore, developing anode materials which have high conductance, 
large capacity, fast intercalation/deintercalation and high reversibility 
can widen the applications of NLIBs. Combining other 2D layered ma-
terials with graphene for forming 2D heterostructures is another work-
able solution. The electrochemical stability, conductivity and 
conductance of heterostructure-based electrodes are high. However, ion 
transfer is limited in these electrodes due to the tight filling between 
layers [45]. 

A lot of pieces of research have been done on the hexagonal boron 
nitride (h-BN) as an encouraging 2D material because of its unique 
properties such as a wide bandgap (6 eV). However, the indirect wide 
bandgap of the h-BN has also limited its performance as a anode material 
[46]. Since anode materials must possess high conductance [3], the 
weak interactions between the surface of the h-BN and different metals 
along with the insufficient adhesion of Li for the conversion of indirect 
wide bandgap into a metallic nature have further limited the application 
of the h-BN for energy storage purposes [47,48]. In 2003, Demirci et al. 
[49] proposed a o-B2N2 monolayer (o-B2N2ML), which is a 2D polygraph 
of Gr-like BN through density functional theory (DFT). which had an 
orthorhombic structure. The results demonstrated that the o-B2N2ML 
had dynamic and mechanical stability. Furthermore, based on the Ab- 
initio molecular dynamic calculations, geometrical structure integrity 
of the o-B2N2ML was as high as 1000 K for 10 ps [50]. The newly pro-
posed o-B2N2ML, which exhibited a direct narrow bandgap (0.64 eV), 
can have a great prospective in the future in hydrogen storages, 
rechargeable batteries, photovoltaics and energy storage and conversion 
devices [49]. More importantly, the o-B2N2ML is capable of reaching a 
very high theoretical specific capacity (TSC) for batteries since both 
nitride and boron are extremely light elements whose molecular weights 
are approximately 14.0067 a.u and 10.811 a.u [50]. 

Within this piece of research, the application of the o-B2N2ML as an 
EM in MIBs was investigated for the first time through DFT calculations. 
First, the electronic attributes and the structural optimization of the o- 
B2N2ML were thoroughly investigated. Next, DFT and DFT-D3 were used 
to calculate the binding strength of Mg at potential sites on the surface of 
the o-B2N2ML. Using a universal optimization procedure based on DFT- 
D3 computations, we also investigated the theoretical capacity and 
equilibrium voltage. Afterwards, we computed the deformation charge 
density and charge transport following the adhesion of an Mg atom, and 
we later computed the ionic diffusion during the adhesion of Mg on the 
o-B2N2ML. By comparing the newly proposed o-B2N2ML within this 
study to other available materials, it was revealed that the B2N2ML has a 
dramatically lower ionic mobility and higher TSC as an EMs. 

2. Computational details 

The basis set 6-31G (d) and the functional B3LYP were used to 
perform the electronic analyses, energy estimations and structural op-
timizations. For the sake of predicting weak interactions, the Grimme’s 
“D3” term was applied [51]. According to previous studies, B3LYP can 
precisely describe the structural-electronic attributes of nanomaterials 
[52–56]. The calculations were all performed through the GAMESS 
program [57]. The Bader charge analysis (BCA) was undertaken for 
analyzing the charge transported between the o-B2N2ML and the Mg 
ions [58]. We also computed the diffusion paths of Mg ions, and the NEB 

method [59] was adopted for estimating the diffusion barrier (hereafter 
DB) energies. Additionally, the adhesion energy of the Mg atom onto the 
o-B2N2ML substrates was estimated as below [60]: 

Ead =
(EMg@o− B2N2

- (Eo− B2N2
+ xEMg))

x
+EBSSE (1) 

Herein, we simplified the charging and discharging process of the o- 
B2N2 Ml as a half-cell reaction as follows: 

xMg+ + xe− + o − B2N2 ↔ Mgx@o − B2N2 (2) 

The formula below can be obtained for computing the open-circuit 
voltage using the reaction model above [60]: 

VOCV =
(EMg@o− B2N2

- (Eo− B2N2
+ xEMg))

xe
(3)  

here, x shows the number of Mg atoms, EMg is the energy of a Mg atom in 
the bulk system, Eo-B2N2 is the energy of the pure o-B2N2 ML and EMg@o- 

B2N2 is the total energy of Mg adhered onto the o-B2N2ML. The negative 
adhesion energy values indicated the adhesion the Mg atoms onto the 
pure o-B2N2ML. We computed the maximum storage capacity as follows 
[16,17,61]: 

C =
xmaxF

M
(4)  

here, F signifies the Faraday constant (26.81 A h mol− 1), xmax shows the 
maximum number of Mg atoms adhered, and M shows the atomic mass. 

3. Results and discussions 

3.1. Electronic and structural attributes 

There is still a growing interest in designing and identifying modern 
and high-efficacy 2D materials for batteries despite the tremendous 
advances made. Thus far, little research has been done on the electronic 
conductance of negative EMs, which is one of the important screening 
factors in improving their charge and discharge performance [62–64]. 
One of the prerequisites for the transfer of electrons is high conductance 
for a negative EMs. An ideal anode material consists of highly conduc-
tive metallic conductors or semiconductors. However, this aspect should 
be further investigated through computational and theoretical ap-
proaches as studies on t insulating materials as the electrodes of batteries 
increase. Thanks to its wide applications, one of the commonly inves-
tigated 2D material with a Gr-like structure is the h-BN (see Figure 1 (a, 
b)) [65]. Nonetheless, the limited attributes and the wide bandgap of h- 
BN have limited its applicability as a negative EM in rechargeable bat-
teries [48]. Hence, an alternative structure of BN with stability should be 
explored which is formed by rearranging the N and B atoms with 
enhanced conductance and optimal electrochemical attributes. The o- 
B2N2ML, which was first introduced by Dimiciri et al. [49], is a novel 2D 
material which has the same planar honeycomb crystalline structure as 
h-BN and Gr. The top-viewed optimized structures of h-BN and o- 
B2N2ML are shown in Fig. 1(b). 4 atoms made of cyclical B–B, B–N, and 
N–N bonds form theo-B2N2ML primitive cell. The length of B–B was 
1.73 Å, that of B–N was1.44 Å, and that of N–N was 1.44 Å, and the 
optimized Bravais vectors of o-B2N2ML were a = 4.57 Å and b = 2.46 Å, 
similar to values obtained in the literature [49]. 

The valence electron localization function was calculated for the 
sake of characterizing the electron localizations in the interstitial spaces 
and understanding the chemical bonds of the o-B2N2ML. The electrons 
were mainly localized in the N–N, B–N and B–B bonds in comparison 
with the hollow sites with zero electron localization. The findings 
demonstrated that there were covalent bonding properties on the sur-
face of the o-B2N2ML.The BCA was undertaken for investigating the net 
charge of B and N atoms, which was approximately ＋0.92 |e| and −
0.92 |e|, respectively. The electronic band structures and the related 
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DOS were computed for both h-BN and o-B2N2ML. Based on the results, 
the o-B2N2 ML had a semiconducting property with a band gap of 0.75 
eV, which was less than that of the h-BN (3.46 eV). 

3.2. The adhesion of a single Mg atom onto o-B2N2ML 

One of the prerequisites for negative EMs in MIBs is the relatively 
high binding strength of Mg atoms. So, DFT-D3 was adopted to calculate 
the binding strength of a single Mg atom at potential sites on theo- 
B2N2ML. For the sake of inhibiting the interaction between adjacent Mg 
ions on the o-B2N2ML, we large -B2N2ML with 10*15 Å was used during 
the process of Mg intercalation. We took into account 7 sites at the outset 
because the o-B2N2Ml had a D2h symmetry. They were further classified 
into 3 categories, namely T (top), B (Bridge), and H (hollow) (see 
Figure 2 (a)). H contained H-1 and H-2 which were over the hollow site 
of B4N2- and B2N4-Hexagons, respectively. T contained T-B and T-N 
located atop of B and N atoms with regard to the crystal symmetry. B 
contained B-1 (between B–B), B-2 (between N–N), and B-3 (between 
B–N). 

As the binding strength becomes more negative, the stability of the 
binding configuration becomes more, which indicated that the Mg- 
atoms have a scattering distribution rather than clustering, so the 
problem due to the formation of metal clusters or dendrites or metal- 
clusters during the charging and discharging processes can be avoi-
ded. The binding energy of the Mg atom at H1 and H2 was the lowest, 
with remaining sites deviating to H2 or H1. The work function, charge 
transport and the binding heights for the first sites with most stability 
computed using DFT and DFT-D3 are summarized in Table 1. As could 
be seen, the binding strength of H1 was the lowest (–0.953 eV). The fully 
optimized geometry of Mg atom at H1 is shown in Fig. 2(b))). The 
binding strength obtained is higher than the one reported for other 
materials [47,48,66]. This revealed that the charging process was very 
fast and the binding interaction between the Mg atom and the ortho-
rhombic was more extensive compared to the weak interaction of metal 
ions in the h-BN [47]. Furthermore, the results revealed that the Mg 
atoms were uniformly spread on the o-B2N2ML during the intercalation 
rather than forming dendrites, which ensured high stability, 

reversibility and safety for next-generation Mg2+-based batteries. 

3.3. OCV and theoretical storage capacity (TSC) 

Through the step-wise insertion of the Mg ion into the both sides of 
the o-B2N2, the OCV and the record-high TSC were examined to inves-
tigate the electronic and chemical performance of o-B2N2 in MIBs. First, 
since the energetic stability of sites H1 and H2 was more, we inserted the 
Mg atoms at site H1 on both sides of o-B2N2 until reaching a recovery, 
which formed the first Mg layer. Next, we located the Mg at H2, which 
formed the second Mg layer, so a series of intermediate configurations 
were considered with the chemical formula Mgx@B2N2 (x = 0.5, 1.0, 
1.5, 2.0, 2.5, 3.0). During the charging process, the binding energies of 
all configurations remained negative, which prevented dendrites from 
forming. So, o-B2N2 as an anode for MIBs is capable of storing 
Mg@B2N2. Hence, the theoretical specific Mg storage capacity on B2N2 
was approximately 1125 mAh/g. It should be also mentioned that the 
Mg storage capacity of the o-B2N2ML was dramatically high. A review of 
the recent literature also demonstrated the Mg-storage capacity of the 
B2N2 is dramatically more than that of reported 2D materials [67–70]. 

Potential voltage is another important factor in assessing the effi-
ciency of MIBs. In Fig. 3, the black line demonstrated that OCV changed 
according to the Mg concentration. As can be seen, the OCV values were 
positive, which demonstrated that the o-B2N2ML can be used negative 
electrode in MIBs. Moreover, after increasing the concentration of Mg 
ions, there was an increase in the OCV via the insertion of 4 Mg potential 
plateaus with an average voltage of around 0.404 V vs. Mg2+/Mg. In 
order to obtain maximum power density during the charging and dis-
charging processes, a moderate average voltage like this can be 
favourable, which can enhance the stability of electrodes by preventing 
dendrites from forming. Therefore, it is possible to utilize o-B2N2ML as 
an anode material in MIBs. 

3.4. Diffusion kinetics and charge transport 

The performance of negative EMs, particularly during the charging 
and discharging processes is a crucial factor in developing Mg-based RBs 
with high performance, which is determined by the kinetic property of 
electron transport. Hence, we investigated the difference in the charge 
density of Mg atoms adhered the optimal site on the o-B2N2ML. The 
accumulation and depletion of charge for both systems shown as three- 
dimensional isosurface distributed charge density plots are shown in 
Figure 4. As could be seen, the area with charge accumulation (yellow 
color) was located inside the Mg atom and the o-B2N2ML surface, and 

Fig. 1. Top view of a free-standing (a) h-BN and (b) o-B2N2 monolayers.  

Table 1 
Ead using DFT and DFT-D3, binding height, charge transfer Q (|e|), and work 
function of Mg adsorbed on the most favorable binding site.  

Site Ead-DFT (eV) Ead-DFT-D3 (eV) Q (e) Eb (eV) 

H1  − 0.953  − 1.013  0.512  0.26 
H2  − 0.869  − 0.939  0.207  0.57  
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the area with charge depletion (light blue color) surrounded the Mg 
atom, showing that the Mg atom donate charge to the o-B2N2ML, which 
caused B and N atoms to be more electronegative than the Mg atoms. 
Additionally, the charge transport was determined by performing the 
BCA, results were provided in Table 1. As could be seen, each Mg atom 
lost about a charge of around 0.512 |e|. 

Another important factor affecting the electronic and chemical per-
formance of batteries, particularly high charging and discharging pro-
cesses, is the diffusion of Mg ions, which was investigated to further 
investigate the performance of the o-B2N2ML [63]. Hence, we computed 
the dilute diffusion paths of Mg ions and the related MEP by performing 
the NEB method. Fig. 5 shows the top-view optimized 3 diffusion 
pathways (A, B, C) and the related MEP. The paths considered included 
the migration of an Mg ion along the Zigzag (direction a, pathway A), 
armchair (direction b, pathway B), and pathway C (atop site H2) on the 
surface of the o-B2N2ML. In Pathway A, the Mg ion was diffused along 
direction b, and perpendicular to N–N and B–B bonds with an EB of 
approximately 0.26 eV. However, in Path B, the Mg ion diffused from H1 
(with the most stability and BE) to the closest site H1 parallel to N–N 

and B–B bonds along direction a. As could be seen, the Mg ion had to 
surmount an EB of 0.59 eV. In addition, in Path C, the Mg ion was 
scattered atop H2 with MEP of 1.02 eV. The computed EB values were in 
line with binding energies provided in Table 1, the diffusion barrier of 
the Mg ion in Pathway A exhibited the lowest energy profile in com-
parison with Pathway B and Pathway C. The results revealed the pos-
sibility of using the o-B2N2ML as an EM in future batteries. 

4. Conclusion 

The potential use of the o-B2N2ML as an EM in MIBs was investigated 
for the first time by considering important factors through DFT com-
putations. We thoroughly examined the ionic-mobility, kinetics and the 
binding strength of Mg intercalation. Based on the results, the Mg atoms 
were inserted into the structure of the o-B2NML without forming clusters 

Fig. 2. (a) The suitable binding sites for Mg on the free-standing o-B2N2 monolayer (T2/T1 refers to the binding sites at the top of N/B atoms; H1 and H2 denote the 
hollow-sites of the hexagonal B4N2-ring and B2N4-ring, respectively; B1, B2, and B3 denotes the binding sites at the B–B, N–N, and B–N bridges, respectively). (b) 
The top views of the most stable optimized configuration of single Mg atom adsorbed on the o-B2N2 monolayer. 

Fig. 3. The voltage profiles (V) with average binding strength (eV) as a func-
tion of the Mg concentration (x). 

Fig.4. Side view of difference charge density (Δρ) for Mg-atom adsorbed at the 
most stable binding site (H1) on o-B2N2 surface. 
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and they were adhered on the hollow site on the surface of the o-B2NML 
and the binding strength was around − 1.013 eV. A TSC of around 1125 
mAh/g was obtained thanks to the high Mg storage capacity on both 
sides of the o-B2NML, which was higher than those of other materials for 
Mg storage. Moreover, a relatively low OCV of around 0.404 eV can be 
advantageous for high-performance MIBs. Owing to the above- 
mentioned electrochemical attributes, the o-B2N2ML is expected to 
have widespread application as an EM in MIBs. Finally, the current study 
can provide guidelines for both experimental and theoretical studies 
investigating the application of 2D anode materials. 
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