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A B S T R A C T   

In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is 
still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic 
markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen- 
deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regula
tory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as 
diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, 
metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like 
miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study 
aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their 
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effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant 
potential of lncRNAs as diagnostic and therapeutic targets for PCa. 
Availability of data and materials: Not applicable.   

1. Introduction 

According to the GLOBOCAN estimating cancer prevalence, prostate 
cancer is considered the top male cancer in Western countries and the 
second most commonly occurring malignancy in males globally, with an 
estimated 1414,000 new malignancy cases and 375,304 mortality in 
2020 [98,105]. The risk of PCa is predicted to elevate due to population 
aging and economic growth [105]. Diverse designed therapeutic 
methods, including surgical and non-surgical treatments such as radio
therapy (RT), androgen-deprivation therapy (ADT), prostatectomy, 
chemotherapy, ablative therapies, and immune-based therapies 
contribute to creating a suitable condition for remedying PCa patients 
[27]. Despite significant PC prognosis and treatment advancements, this 
malignancy still challenges the global healthcare system. Accumulating 
studies indicate solid attention to lncRNAs, as potential and novel 
diagnostic/therapeutic targets involved in developing and progressing 
different cancers [140]. 

Long non-coding RNAs (lncRNAs) are known as genetic material 
with more than 200 nucleotides that are transcribed without protein 
products but indicate diverse regulatory biological functions [85]. 
LncRNAs interact mainly with DNA, mRNA, miRNA, and protein, sub
sequently modulating the gene expression at the transcriptional, 
post-transcriptional, translational, and post-translational levels by 
different mechanisms [145]. Also, several lncRNAs have been func
tionally related to human diseases, especially many types of cancer. 
Dysregulated lncRNAs have been implicated in breast, glioblastoma, 
liver, colorectal, and leukemia. Generally, dysregulated lncRNAs act on 
cellular processes such as cellular proliferation, angiogenesis, metastasis 
ability, and immune evasion [30]. Therefore, the specific expression 
patterns of lncRNAs can be considered potential cancer biomarkers and 
highlight approaches for cancer treatment. 

2. Characteristics and functions of lncRNAs 

LncRNAs are well-known as heterogeneous non-coding RNAs 
(ncRNAs) with lengths more than 200 nt. This distinction helps to 
separate lncRNAs from miRNAs and other sRNAs [30]. LncRNAs lack 
protein-coding activity, but it is found that several lncRNAs include 
Open reading frames (ORFs) or short open reading frames, which can 
encode some small proteins [42]. Like mRNA, canonical lncRNA tran
scription or biogenesis requires RNA polymerase II (Pol II) [21] and 
undergoes post-transcriptional modifications, such as alternative 
splicing, 5′ capping, poly-A tail addition, and RNA editing. Some 
lncRNAs may also carry single nucleotide polymorphisms (SNPs) that 
regulate their expression and activity. Only 11–29% of lncRNAs in all 
tissues show expression patterns at the very minutest levels compared 
with protein-coding mRNAs [18]. 

From different genomic locations, various types of lncRNAs are 
transcribed; based on their transcriptional-derived site, lncRNAs are 
divided into four groups [16]. The largest group of lncRNAs is the long 
intergenic non-coding RNAs (lincRNAs) that indicate not overlapping or 
lying near protein-coding genes [39]. Antisense lncRNA, the second 
most widespread type of lncRNA, is transcribed from the opposing DNA 
or the antisense strand, indicating overlap with the coding strand [28]. 
The third type of lncRNAs includes the sense lncRNA transcripts and 
sense overlapping or sense intronic lncRNAs. These transcripts are 
located on the same strand as protein protein-coding genes and tran
scribed in the same direction. Bidirectional lncRNAs or divergent 
lncRNAs are the fourth type of lncRNAs. The mentioned transcripts are 
placed on the antisense strand and contain a transcription start site (TSS) 

adjacent to the TSS of the protein-coding gene with a transcription in the 
reverse direction [10]. Also, lncRNAs contain few but longer exons than 
protein-coding RNAs [41]. Some lncRNAs include vital conserved pro
moter regions between vertebrates, poorly conserved lncRNA exons 
between species, distinctive DNA-binding motifs in their promoters, and 
preferred transcription factors (TFs) [96]. LncRNAs also display cell or 
tissue type-specific expression and a different localization in subcellular 
patterns, numerous being mainly nuclear [11]. The subcellular distri
bution of lncRNAs is a determinative factor for their regulatory and 
biological activities. According to obtained data, there are nuclear, 
cytoplasmic, and mixed localization patterns of lncRNAs. A deep un
derstanding of the localization of lncRNA can help choose effective 
methods for manipulating lncRNA levels in lncRNA-based therapeutic 
strategies [7]. Overall, the regulatory role of nuclear lncRNAs is related 
to the modulation of gene expression at the epigenetic and transcrip
tional level in cis or trans by different molecular mechanisms, counting 
signals, guides, decoys, scaffolds, and enhancers [76]. 

LncRNAs may function as effectors of signaling pathways that 
modulate transcriptional processes or the expression of various genes. 
Also, lncRNAs as decoys bind to regulatory proteins or transcription 
factors and translocate these molecules to DNA binding sites. Some 
lncRNA has a guiding role and employs or delocalizes modulation fac
tors to stimulate or inhibit the expression of genes through either cis or 
trans mechanisms. Also, as scaffolds to other components, lncRNAs may 
be adaptors that transport binding partner proteins inside near other 
elements to help develop ribonucleoprotein complexes that contribute 
to maintaining genomic stability [84]. On the other hand, lncRNAs 
stabilize mRNA expression and translation in the cytoplasm. One of the 
main methods by which lncRNAs perform this activity is functioning as a 
competitive endogenous RNA (ceRNA) [115], which can lead to 
microRNA (miRNA) dysfunction via sequestration, thus suppressing the 
inhibitory effect of miRNAs and their mRNA targets [91] and modu
lating broad-ranging biological activities [71]. 

3. Correlation between lncRNAs and their counterpart miRNAs 
involved in PC tumorigenesis 

miRNAs, as short non-coding RNAs, can modulate the expression of 
different genes primarily through binding to 3/-UTR at mRNA and 
protein levels [49]. In addition to the regulatory role of miRNAs, some 
upstream regulators also regulate the expression and activity of miRNAs 
via sponging and subsequently modulating the expression of their target 
mRNAs [156]. Growing evidence illustrated the deregulated expression 
of miRNA in PCa and its connection with malignant features of tumor 
cells. Tumor-promoting lncRNAs and tumor-suppressor lncRNAs also 
modulate miRNA expression through PCa initiation and development 
[78]. Then, in the following sections, we will characterize some of these 
interactions considering their oncogenic and tumor-suppressive func
tion through PCa development and progression. 

3.1. Oncogenic lncRNAs modulate the expression of miRNAs 

As a tumor-promoting factor, lncRNA CCAT1 (colon cancer- 
associated transcript 1) has a critical role in many types of cancer. 
CCAT1 induces endometrial cancer proliferation, whereas it decreases 
the estrogen receptor-alpha (ERα) expression levels and the activity of 
its downstream molecular signaling [101]. Also, the regulatory effect of 
lncRNA CCAT1 on the expression of miRNAs in diverse malignancies has 
been illustrated [92]. For example, CCAT1 upregulation is correlated 
with the high mortality rate of castration-resistant patients to stimulate 
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PCa proliferation and progression. So, CCAT1 interacts with 
miRNA-28–5p tumor-suppressor in the cytoplasm and facilitates PCa 
progression in vitro and in vivo. Besides, it functions as a scaffold that 
promotes the formation of DEAD-box helicase 5 (DDX5) and androgen 
receptor (AR) transcriptional complex, modulating the expression of 
their target genes. AR signaling is a driver signaling pathway involved in 
the growth and metastasis of nearly all PCa cells. Subsequently, thera
peutic approaches targeting this pathway, such as ADT, are widely used 
for PCa [133]. 

lncRNA LINC00665 is another emerging tumor-promoting factor in 
human cancers, indicating a crucial function in modulating numerous 
molecular pathways and responsible for reduced overall survival of PCa 
patients [25]. LINC00665 holds great promise as a target for diagnosing 
and treating PCa. A previous study indicated that LINC00665 increased 
the proliferation and metastasis of PCa cells by sponging 
miRNA-1224–5p and following overexpression of the Staphylococcal 
nuclease and tudor domain containing 1 (SND1) oncogene. The upre
gulated SND1 contributes to PCa progression, and miRNA-1224–5p, as a 
tumor-suppressor, suppresses SND1 expression [13]. Besides, the upre
gulated lncRNA small nucleolar RNA host gene 16 (SNHG16) has an 
important function in the proliferation, migration, and invasion of PCa 
cells. SNHG16 exerts its oncogenic effects by targeting miR-373–3p. The 
suppression of miR-373–3p could rescue the inhibition of cellular ac
tivities of SNHG16 knockdown through stimulating transforming 
growth factor-beta receptor type 2 (TGF-β-R2)/ (Suppressor of Mothers 
against Decapentaplegic) SMAD signaling. Also, TGF-β-R2 was illus
trated to be targeted via miR-373–3p, leading to repression of cellular 
proliferation and migration ability. In other words, SNHG16 stimulates 
the cellular proliferation and migration ability of PCa cells by modu
lating the miR 373 3p/TGF β R2/SMAD axis [114]. Another 
tumor-promoting lncRNA involved in PCa progression is SNHG3 
showing a correlation with poor prognosis of patients. Following SNHG3 
suppression, cellular proliferation, migration, and invasion were 
considerably repressed in vitro in PCa cells. miR-1827, as downstream 
target of SNHG3, has the direct interaction with SNHG3. It is indicated 
that transfection with miR-1827 inhibitor overturned the effects of 
SNHG3 suppression on cell proliferation, invasion, and migration. 
Therefore, SNHG3 was suggested to promote PCa progression by 
sponging miR-1827, demonstrating SNHG3’s potential as a diagnostic 
and therapeutic target for PCa [50]. Also, SNHG3 blocks miR-487a-3p, 
which leads to increased cellular viability, migration, and invasion, 
aligned with Snail and N-cadherin upregulation, and prevented E-cad
herin expression in LNCaP cells. 

The inhibitory impacts of miR-487a-3p mimic on invasion, migra
tion, and EMT of LNCaP cells were inverted via either SNHG3 or 
tripartite motif 25 (TRIM25) plasmids. Also, the effect of miR-487a-3p 
inhibitor was inversed by TRIM25 siRNA and SNHG3 siRNA in PC-3 
cells. Then, SNHG3 modulates PCa progression through sponging miR- 
487a-3p and following upregulation of TRIM25 [134]. LncRNA 
KCNQ1OT1, as another oncogenic lncRNA, has been shown to possess a 
binding site for miR-15a tumor-suppressor. Then, KCNQ1OT1 was 
suggested to sponge miR-15a and rescue the suppressive effect of 
miR-15a on PD-L1. The highly expressed level of PD-L1 stimulates 
proliferation, EMT, invasion, angiogenesis, and tumor stemness in PCa. 
Subsequently, lncRNA KCNQ1OT1 overexpression promoted immune 
evasion and malignant features of PCa cells through overexpressing 
PD-L1 immune checkpoint [12]. Also, another study evidenced that the 
suppression of KCNQ1OT1 blocked cellular invasion and migration and 
led to changes in levels of epithelial–mesenchymal transition (EMT) 
markers and essential modulators of TGF-β signaling, which all were 
reestablished via transfection of PCa cells using Protein-tyrosine Phos
phatase 4A3 (PTP4A3)-wild type (WT) plasmid or anti-miR-137–3p. 
PTP4A3 could induce EMT by TGF-β signaling cascade through prostate 
tumorigenesis. Hence, it was illustrated that migratory and invasive 
features of PCa cells are promoted via the KCNQ1OT1/
miR-137–3p/PTP4A3 axis [111]. Also, miR-211–5p is another 

tumor-suppressor miRNA targeted by KCNQ1OT1, which binds to 
Chitinase-3-like protein 1 (CHI3L1) 3′-UTR and suppresses its expres
sion. In PCa patients, the expression of miR-211–5p was shown to be 
low-expressed, while CHI3L1 (YKL-40) was highly expressed. The sup
pressed YKL-40 is induced via the deactivation of KCNQ1OT1 expression 
that may be offset via miR-211–5p inhibitor transfection in PCa cells. 
Consequently, KCNQ1OT1 lncRNA, as a ceRNA, increased the expres
sion of CHI3L1 and PCa progression via competitive binding to 
miR-211–5p [40]. Another example is related to lncRNA PlncRNA-1, 
which is overexpressed in PCa and modulated via AR. The upregula
tion of PlncRNA-1 promotes PCa cellular proliferation and EMT and 
inhibits cell apoptosis [55]. Mechanically, PlncRNA-1 acts as ceRNA to 
sponge AR-modulating miRNAs, including miR-297 and miR-34c, in 
vitro and in vivo [31]. 

In PCa, lncRNA MALAT1 also displays overexpressed levels during 
cancer development, positively correlated with higher prostate-specific 
antigen, tumor stage, and Gleason score [90]. The suppressed MALAT1 
dampened cell proliferation, EMT, migration, and invasion and stimu
lated cellular apoptosis, even in xenografts models in PCa [83]. Also, the 
overexpression of metastasis-associated with lung adenocarcinoma 
transcript 1 (MALAT1) is reported in Docetaxel (DTX)-resistant PCa 
patient tumors and (DTX)-resistant AR-negative DU-145 and PC3 cells. 
Functionally, MALAT1 was indicated to sponge miR-145–5p and 
consequently increase AKAP12 expression, a direct target of 
miR-145–5p. The upregulated miR-145–5p and silenced AKAP12 sup
pressed the oncogenic effects of MALAT1 on tumorigenesis and DTX 
resistance in PCa cells [125]. The expression level of another lncRNA 
with tumor-promoting activity, Nuclear Enriched Abundant Transcript 1 
(NEAT1), was also reported to increase cell proliferation, migration, and 
invasion, inhibit cellular apoptosis, and arrest cell cycle progression. 
NEAT1 downregulates miR-766–5p expression through ceRNA activity 
leading to malignant features in PCa cells, whereas the overexpressed 
miRNA-766–5p hampers the malignant features of PCa cells. 
miRNA-766–5p was also illustrated to target E2F3 directly and to be 
modulated by NEAT1 expression. Then, NEAT1 contributes to PCa 
progression by modulating miRNA-766–5p and E2F3 expression [149]. 
Also, NEAT1 was reported to be considerably enhanced in PCa tumor 
and DTX-resistant cells. Increased drug resistance associated with 
NEAT1 is a consequence of the upregulation of Acyl-CoA synthetase 
long-chain family member 4 (ACSL4), high mobility group A1 
(HMGA1), and RET through binding to associated miRNAs, including 
miR-34a-5p, miR-98–5p, and miR-204–5p [38,53]. 

Urothelial carcinoma associated 1 (UCA1), as another oncogenic 
lncRNA, is positively linked with advanced TNM stage, Gleason score, 
and PCa patients’ poor survival [35,141]. LncRNA UCA1 increases 
oncogenic factors, including C-X-C motif chemokine receptor 4 
(CXCR4), Sirtuin 1 (SIRT1), and Activating transcription factor-2 
(ATF2), by sponging miR-204. The suppressed UCA1 prevented 
cellular proliferation, invasion, migration and increased in vivo and in 
vitro sensitivity to chemotherapy [44,108,141]. Besides, UCA1 sponges 
miR-143 as an anti-proliferative miRNA, leading to upregulating myosin 
VI (Myo6) expression and other oncogenes in PCa [136]. Also, UCA1 
directly interacts with miR-184 and acts as a sponge for this miRNA, 
affecting apoptosis and metastasis in PCa cells [157]. The dysregulation 
of lncRNA TUG1 has been stated to exert both tumor-suppressor and 
oncogenic activity that depends on several factors [34]. TUG1 is another 
lncRNA upregulated in PCa tissues that correlate with poor patient 
survival and prognosis [123,129]. It is indicated that TUG1 stimulates 
PCa cell proliferation, EMT, invasion, and migration through sponging 
and downregulating miR-496 and miR-26a. The silenced TUG1 blocked 
tumor growth in DU145 xenograft. It boosted radio-sensitivity in vivo 
through the overexpression of miR-496 and blockage of the 
Wnt/b-catenin pathway mediated by β-catenin inhibition and down
regulation of c-myc and cyclin D1 [59,126]. Prostate cancer gene 3 
(PCA3) or DD3, as PCa-highly specific lncRNA and a diagnostic 
biomarker of PCa, is reported to activate AR signaling, promoting PCa 
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cells’ survival [57]. PCA3 also has a suppressive effect on miR-1261 
expression through ceRNA activity. miR-1261 inactivates Protein ki
nase D3 (PRKD3 or PKD3) expression and inhibits PCa invasion and 
migration. Silencing of PCA3 promotes the expression of miRNA-1261, 
which in turn targets the PRKD3 gene and efficiently suppresses in 
vitro PCa progression by inducing autophagy [45]. It has also been 
recognized miR-218–5p has a binding site inside the PCA3 sequence. 
The silenced PCA3 increased apoptosis and prevented cellular prolifer
ation and migration, induction of miR-218–5p expression containing 
malignant properties through blocking HMGB1. Thus, lncRNA PCA3 
contributes to PCa progression by sponging miR-218–5p and modulating 
HMGB1 [139]. Table 1 represents further interactions between lncRNAs 
and miRNAs through prostate tumorigenesis. 

3.2. Tumor-suppressors lncRNAs interact with miRNAs in prostate cancer 

Growing evidence indicates that various lncRNAs act as oncogenic 
genes in the initiation and progression of malignancies via the modu
lation of miRNAs. Against the oncogenic functions of lncRNA, several 
lncRNAs act as tumor-suppressors to prevent viability and migration, 
induce apoptosis, and maintain genomic stability by modulating the 
activity of miRNAs [95]. 

It has been stated that lncRNA X-inactive-specific transcript (Xist) 
modulates the malignant properties of various cancers. XIST was low 
expressed in human PCa and was associated with poor prognosis in 
patients with PCa. XIST inhibited cell proliferation and metastasis in PCa 
both in vitro and in vivo. MiR-23a was found as a direct target of XIST. It 
negatively regulates the expression of miR-23a, promoting Raf Kinase 
Inhibitory Protein (RKIP) expression. The upregulated miR-23a strongly 
abolished the up-regulation of RKIP prompted via XIST, indicating that 
XIST positively modulates the expression of RKIP through competitively 
binding to miR-23a [24]. Also, MAGI2-AS3 is considered a novel 
negative modulator and one of the most low-expressed lncRNAs in PCa. 
It is indicated that the upregulated MAGI2-AS3 reduced cell viability 
and induced cell apoptosis in PC-3 and DU145 PCa cells. Also, the 
elevated MAGI2-AS3 diminished the activity of STAT3 in these cells. 
MiR-424–5p, a positive modulator of the STAT3 pathway, was found as 
a target of MAGI2-AS3. Therefore, MAGI2-AS3 deactivates the STAT3 
signaling pathway to prevent PCa cellular proliferation by acting as a 
miRNA-424–5p sponge [113]. As another tumor-suppressor, lncRNA, 
MIR22HG is downregulated in PCa cells. The overexpressed MIR22HG 
repressed cellular proliferation stimulated cellular apoptosis, decreased 
Bcl-2 and Ki67 expressions, and increased cleaved caspase 3 and Bax 
expressions. Besides, MIR22HG was recognized as a sponge of 
miR-9–3p, and the effects of the upregulated MIR22HG on cellular 
proliferation and apoptosis were partly prevented via miR-9–3p upre
gulation. In short, MIR22HG functions as an anti-tumor gene in PCa by 
hindering cellular proliferation and stimulating apoptosis by sponging 
miR-9–3p [143]. Also, it evaluated the function and potential mecha
nism of RP1–59D14.5 in PCa. The down-regulation of RP1–59D14.5 was 
indicated in PCa cells. The elevated RP1–59D14.5 decreased cellular 
proliferation, migration, and invasion and induced autophagy in PCa 
cells. It is validated that RP1–59D14.5 acted as a ceRNA to modulate 
large tumor-suppressor kinase 1/2 (LATS1/2) by targeting miR-147a. 
Furthermore, RP1–59D14.5 employed HUR to stimulate casein kinase 
1 (CK1) expression. Together, RP1–59D14.5 promoted the degradation 
of the yes-associated protein (YAP) to trigger the Hippo pathway in PCa 
progression by targeting the miR-147a/LATS1/2 axis and employing 
HUR to help the interaction of CK1 and β-transduction repeat-containing 
protein (βTrCP). Therefore, RP1–59D14.5 can be a tumor-suppressor 
and a key target in PCa [154]. 

Furthermore, the depletion of LINC01679 as a tumor-suppressor 
increased cellular proliferation and metastasis and prevented 
apoptosis in vivo and in vitro. LINC01679 sponges miR-3150a-3p, and 
the elevated miR-3150a-3p was correlated to the promoted proliferation 
and reduced apoptosis of PCa cells [77]. Also, ADAMTS9-AS1 can have a 

Table 1 
Interactions between oncogenic lncRNAs and miRNAs.  

LncRNA target 
miRNA 

Expression 
pattern 

Effects Ref 

DANCR miR-33b- 
5p 

Upregulated Chemoresistance [110] 

MYCNOS miR-466 Upregulated Proliferation [9] 
PBC11 hsa-miR- 

137 
Upregulated EMT [15] 

LINC00184 miR- 
105–5p 

Upregulated Drug-resistance 
Immune escape 

[144] 

MNX1-AS1 miR-2113 Upregulated Viability 
Migration 
Invasion 

[63] 

LINC01963 miR-216b- 
5p 

Upregulated Chemosensitivity 
Metastasis 

[122] 

PCAT1 miR-25–3p Upregulated Drug resistance [52] 
LINC01207 miR-1182 Upregulated Proliferation 

Colony formation 
Apoptosis 

[88] 

PCGEM1 miR- 
129–5p 

Upregulated Viability 
Apoptosis 
Cell cycle 

[32] 

FOXD1-AS1 miR-3167 Upregulated Viability, 
Proliferation 
Migration 
Invasion 
Apoptosis 

[89] 

AC245100.4 miR- 
145–5p 

Upregulated Proliferation 
Migration 

[119] 

CCAT1 miR- 
490–3p 

Upregulated Proliferation 
Apoptosis 
Migration 
Invasion 

[4] 

AATBC miR- 
1245b-5p 

Upregulated Growth [142] 

SNHG11 miR‑184 Upregulated Proliferation 
Migration 
Invasion 

[121] 

FAM83H- 
AS1 

miR-15a Upregulated Proliferation, 
Cell cycle, 
Migration 

[65] 

AFAP1-AS1 miR-15b Upregulated Proliferation 
Invasion 

[64] 

PCGEM1 miR- 
506–3p 

Upregulated Proliferation 
Migration 
Invasion 

[67] 

SNHG1 miR- 
383–5p 

Upregulated Proliferation 
Apoptosis 
Migration 
Invasion 

[48] 

DANCR miR- 
214–5p 

Upregulated Proliferation 
Apoptosis 
Migration 

[17] 

LINC00115 miR- 
212–5p 

Upregulated Proliferation 
Invasion 

[86] 

Linc00963 miR-655 Upregulated Proliferation 
Colony formation 

[2] 

LINC01116 miR- 
744–5p 

Upregulated Proliferation 
Migration 
Invasion 
EMT 

[135] 

DLX6-AS1 miR- 
497–5p 

Upregulated Proliferation 
Apoptosis 

[159] 

OGFRP1 miR- 
149–5p 

Upregulated Chemoresistance [102] 

CASC11 miR-145 Upregulated Proliferation 
Colony 
Migration 

[6] 

SNHG8 miR-384 Upregulated Proliferation 
Migration 
Invasion 

[94] 

OIP5-AS1 miR- 
128–3p 

Upregulated Cell growth 
Ferroptosis 

[146] 

LINC01213 miR- 
597–3p 

Upregulated Viability 
Proliferation 

[151] 

(continued on next page) 
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critical role in cancer development. The expression of ADAMTS9-AS1 is 
down-regulated in PCa. Increasing ADAMTS9-AS1 expression hinders 
PCa cellular proliferation by inducing cellular apoptosis. Outstandingly, 
miR-142–5p mimic and small-interfering RNA targeting cyclin D1 
(CCND1, si-CCND1) can decrease the blockage impacts of 
ADAMTS9-AS1 upregulation on PCa cell proliferation. In summary, 
ADAMTS9-AS1 reduces PCa progression by modulating the 
miR-142–5p/CCND1 axis, which provides a novel therapeutic strategy 
for PCa patients [158]. Further, PCa-related interactions between 
tumor-suppressor lncRNAs and miRNAs are shown in Table 2. 

4. EMT-related lncRNAs in prostate cancer 

EMT is considered a vital originating factor driving this procedure for 
metastatic cancer and shows a key role, which confers metastatic fea
tures on cancer cells by inducing mobility and invasion [81]. EMT is a 
reversible procedure accompanied by the depletion of cell polarity and 
intercellular adhesion of stable epithelial cells. Also, the morphology of 
cells transforms from epithelial into spindle-shaped mesenchymal cells 
and gains migration capacity [56]. During the development of EMT, the 
level of numerous epithelial cell biomarkers reduces, for example, 
E-cadherin, cytokeratin, and laminin, which results in the damage of 
cell-to-cell adhesion. On the contrary, mesenchymal biomarkers con
taining N-cadherin, β-catenin, Vimentin, and Snail protein, are overex
pressed; as a result, the cells migrate or metastasize to several organs 
[82]. UCA1, a tumor-promoting lncRNA, is critical in many human 
malignancies through increasing cellular proliferation and migration. 
Also, a new and different biological function of UCA1 is reported. 
Uniquely, it is responsible for preserving the low-tumorigenic, non-
metastatic activities in primary prostate epithelial cells. Functionally, 
UCA1 can help stabilize E-cadherin’s protein expression by preventing 

its interaction with E3 ligase murine double minute 2 (MDM2), inhib
iting ubiquitination-mediated E-cadherin degradation by the protea
some. UCA1 indicated a novel essential function in efficiently 
maintaining high expression of E-cadherin via a dual molecular mech
anism, which resulted in the suppression of tumorigenesis and metas
tasis in primary prostate cancer cells [150]. 

As another lncRNA involved in EMT, lncRNA CHRF stimulated EMT, 
indicating E-cadherin down-regulation and the overexpression of N- 
cadherin, Vimentin, and Zinc finger E-box binding homeobox 1 (ZEB1) 
[68]. Besides, SNHG1 is an oncogenic lncRNA and indicates a biological 
function in the development and progression of PCa. Functionally, the 
elevated SNHG1 induced PCa cells EMT, accompanied by 
low-expression of the epithelial biomarker, E-cadherin, and the over
expression of mesenchymal biomarker, Vimentin. In a mechanistic view, 
SNHG1 competitively interrelates with hnRNPL to damage the E-cad
herin translation, resulting in EMT processes and stimulating PCa cell 
metastasis [99]. It has been evidenced that PlncRNA-1 and TGF-β1 
expression levels were considerably upregulated in PCa tissues. N-cad
herin, TGF-β1, and Cyclin-D1 were low-expressed, and E-Cadherin was 
overexpressed in LNCAP cells after blocking PlncRNA-1. PlncRNA-1 can 
modulate PCa cell growth and EMT functionally via TGF-β1 signaling 
[54]. The CCAT2 expression was upregulated in PCa cells and tissues 
and indicated poorer overall survival. The reduced expression of CCAT2 
could cause PCa cell growth, invasion, and migration in vitro. Further
more, the suppression of CCAT2-induced EMT by abolishing the 
expression of N-cadherin and Vimentin and increasing E-cadherin 
expression [152]. LncRNA PVT1 stimulates PCa metastasis and invasion 
by regulating EMT. It sponges miRNA-186–5p to induce EMT by 
enhancing the expression of Twist1 as a transcription factor related to 
EMT [8]. 

The upregulated expression of prostate cancer-associated intergenic 
non-coding transcript (PAINT) was illustrated in the metastatic form of 
PCa and the advanced stage of the malignancy. Silencing PAINT reduced 
migration ability and Slug and Vimentin expression. In contrast, Ectopic 
expression of PAINT repressed E-cadherin and increased higher 
expression of mesenchymal markers [43]. LncRNA HULC expression 
was elevated in PCa and positively correlated to the advanced stage of 
PCa patients. HULC blockage inhibited PCa cell growth and metastasis 
by reducing Vimentin and N-cadherin expression and increasing 
E-cadherin levels [153]. LncRNA-ATB expression was remarkably 
increased in patients with PCa. LncRNA-ATB triggered EMT related to 
ZNF217 and ZEB1 levels by activating phosphatidylinositol-3-kinase 
(PI3K)/ protein kinase B (AKT) and extracellular signal-regulated ki
nases 1 (ERK) pathways [124]. For example, it is reported that patients 
with high expression levels of SSTR5-AS1 presented poorer survival. 
Functionally, SSTR5-AS1 induction stimulated the PCa cells’ prolifera
tion, migration, and invasion. At the molecular level, silencing 
SSTR5-AS1 prevented the protein levels of N-cadherin, PCNA, and 
Vimentin and upregulated E-cadherin expression in PC-3 cells [137]. 
LncRNA VIM-AS1, as an oncogene, increased migration and invasion, 
and cell growth in PCa cells. Also, VIM-AS1 provoked vimentin 
expression, which induced EMT in these cells [147]. UBE2R2-AS1 exerts 
an oncogene modulator in PCa tissues. UBE2R2-AS1 suppressing pre
vented proliferation, migration, and invasion, triggered cell cycle G0/G1 
arrest and apoptosis in PCa cells, accompanied by reduced expression of 
N-cadherin, Vimentin, Proliferating cell nuclear antigen (PCNA), CDK4, 
Bcl-2, Cyclin D1, and increased E-cadherin expression [104]. It is found 
the differentially expressed lncRNA AC245100.4 that promoted the 
migration of PCa cells by modulating PAR2. The AC245100.4 or PAR2 
suppression led to a reduction in Vimentin but an increase in E-cadherin 
protein levels [66]. The reported LINC01296-expression level was 
higher in PCa tissues and cells and correlated with lymph node metas
tasis. In vitro biological evaluation has further verified that LINC01296 
reduction inhibited PCa proliferation, migration, and invasion, 
involving the modulation of the PI3K-Akt-mTOR signaling pathway and 
EMT [117]. Another study presented that the lncRNA DUXAP10 was 

Table 1 (continued ) 

LncRNA target 
miRNA 

Expression 
pattern 

Effects Ref 

RHPN1-AS1 miR-7–5p Upregulated Proliferation 
Cell cycle 
Apoptosis 
Autophagy 
Invasion 

[74]  

Table 2 
Interactions between tumor-suppressor lncRNAs and miRNAs.  

LncRNA Target miRNA Expression pattern Effects Ref 

FGF14-AS2 miR-96–5p Downregulated Tumor growth 
Metastasis 

[60] 

LINC00641 miR-365a-3p Downregulated Growth 
Invasion 

[70] 

MAGI2-AS3 miR-142–3p Downregulated Proliferation 
Migration 
Invasion 

[47] 

MBNL1- 
AS1 

miR-181a-5p Downregulated Proliferation 
Migration 
Invasion 

[20] 

PGM5-AS1 miR-587 Downregulated Proliferation 
Apoptosis 

[22] 

CASC2 miR-183 Downregulated Proliferation 
Apoptosis 
Drug sensitivity 

[33] 

FER1L4 miR-92a-3p Downregulated Proliferation 
Apoptosis 

[51] 

MEG3 miR-9–5p Downregulated Apoptosis 
Proliferation 
Migration 
Invasion 

[118] 

HCG11 miR-543 Downregulated Apoptosis 
Proliferation 
Migration 
Invasion 

[112]  
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upregulated in PC3 and DU145 cell lines. It could stimulate PCa pro
gression by modulating the process of EMT [109]. 

Fig. 1 represents lncRNAs involved in various aspects of prostate 
tumorigenesis, including the EMT process. 

4.1. LncRNAs regulate cell death in prostate cancers 

Apoptosis is a central mode of “programmed” cell death that contains 
two pathways: intrinsic and extrinsic. The process of programmed cell 
death is strongly modulated via molecular pathways, and based on the 
function of lncRNAs as tumor-promoting or tumor-suppressor factors, 
they can prompt or prevent apoptosis activity in malignant tumors. Bcl- 
2, Bax, and Caspase cascades are the most vital factors associated with 
apoptosis ability in tumor cells [26]. As the first research of a 
death-stimulating lncRNA in PCa cells, Growth Arrest-Specific 5 (GAS5) 
encodes many snoRNAs inside its introns. Still, exonic sequences have 
lncRNA production, functioning as the glucocorticoid riborepressor and 
correlated receptors. GAS5 is abnormally expressed in numerous ma
lignancies, especially PCa. It is reported that cell death was tightly 
related to cellular GAS5 levels. So, after transfection of 22Rv1 cells with 
plasmids encoding GAS5 transcripts, basal apoptosis improved, and cell 
survival was reduced. Therefore, GAS5 stimulates the apoptosis of PCa 
cells, and exonic sequence, i.e., GAS5 lncRNA, is adequate to interme
diate this process [87]. 

It is recognized lncRNAs prompted via androgen in AR-positive PCa 
cells. The suppressor of cytokine signaling 2-antisense transcript 1 
(SOCS2-AS1), an androgen-regulated lncRNA, was upregulated in 
castration-resistant PCa model cells. SOCS2-AS1 increased androgen- 
dependent cell growth and was castration-resistant. Functionally, the 
silenced SOCS2-AS1 induced gene expression in the apoptosis pathway, 
such as tumor necrosis factor superfamily member 10 (TNFSF10), and 
increased docetaxel chemosensitivity of PCa cells. SOCS2-AS1 is vital in 
castration-resistant PCa progression by inhibiting apoptosis [79]. MEG3, 

another example of lncRNA involved in apoptosis, indicates significantly 
low expression in PCa tissues. MEG3 repressed intrinsic cellular survival 
by decreasing the protein expression of Bcl-2, increasing Bax, and 
stimulating Caspase 3 in vitro and in vivo [72]. The expression of 
POTEF-AS1, an androgen-dependent lncRNA, was controlled via an 
androgen receptor. It is reported that POTEF-AS1 stimulated cellular 
growth, suppressed genes associated with the Toll-like receptor signal 
and apoptosis pathways, and blocked apoptosis in docetaxel-treated 
LNCaP cells [80]. Also, it is revealed that lncRNA PVT1’s oncogenic 
role in PCa can notably stimulate PCa growth and inhibit cellular 
apoptosis. PVT1 reduction also significantly increased apoptosis and 
cleaved Caspase-3 and Cleaved caspase-9 expression levels but 
decreased the expression of c-Myc [127]. An overexpressed and 
prognosis-associated lncRNA, PART1, induced PCa cell proliferation and 
inhibited cellular apoptosis. Furthermore, PART1 regulated downstream 
gene expression in TLR pathways containing TNFSF10, Toll-like recep
tor 3 (TLR3), and CXCL13 to affect PCa cells further, signifying its 
carcinogenesis on PCa. PART1 stimulated proliferation ability and 
decreased apoptosis via the presentation of TLR pathways in PCa [97]. It 
is indicated the role of oncogenic lncRNA PRRT3-AS1 on the PCa pro
gression with the involvement of peroxisome proliferator-activated re
ceptor γ (PPARγ) as a target gene of this lncRNA. The silenced 
PRRT3-AS1 can induce apoptosis activity and autophagy, hindering 
proliferation, migration, and invasion of PCa cells by activating PPARγ 
and blocking the mammalian target of rapamycin (mTOR) signaling 
pathway [29]. Research about other lncRNAs illustrated that lncRNA 
GASL1 was considerably low-expressed in patients’ PCa tissue and 
serum. The upregulated GASL1 withdrew PCa cell growth and intensi
fied the expression of Bcl-2 and downregulated GLUT-1 expression that 
involved cell proliferation [62]. Recent research has revealed that HOXA 
Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1), was upre
gulated in PC3 cells. Silencing HOTAIRM1 alleviated PC3 cell prolifer
ation and amplified apoptosis so that the pro-apoptotic agents’ 

Fig. 1. LncRNAs are involved in PC pathogenesis by affecting EMT, Invasion, Metastasis, Tumor growth, apoptosis, and chemoresistance.  
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expression, for example, Bax and Bad was notably induced. Still, the 
expression of Bid and Bcl-2 as anti-apoptotic factors were reduced [106]. 
Also, PSLNR, a tumor-suppressor, remarkably decreased PCa prolifera
tion by prompting cellular apoptosis in a p53-dependent way [103]. 

Along with apoptosis, viability, and survival of tumor cells mainly 
depend on autophagy as another form of programmed cell death. 
Autophagy is well-known; the development of autophagosomes ac
companies a highly conserved self-degradative process as a double- 
membrane vesicle. The enclosed portions of cytosol and organelles 
into autophagosomes are transported into the vacuole/lysosome, a 
degradative organelle, for breakdown and subsequent recycling of the 
resulting macromolecules. This way rescues the cell from many stress 
conditions. Therefore, autophagy is critical during cell developmental 
processes and acts in tumor blockage [130]. It is reported that auto
phagy is controlled via numerous molecular pathways such as 
AMP-activated protein kinase (AMPK), Beclin-1, mTOR, and ATGs. It 
functions like a double-edged sword in cancer and indicates pro-survival 
and pro-death roles, so both have roles in a single malignancy [26]. The 
mammalian target of rapamycin complex 1 (mTORC1) and AMPK are 
two main proteins that distinguish external stimuli for the initiation of 
autophagy [128]. Among many identified new molecular modulators in 
autophagy regulation, lncRNA affects the autophagy mechanism in tu
mors via various signaling pathways. SNHG12 was highly expressed in 
the serum of PCa cells and patients as a lncRNA involved in autophagy. 

Moreover, silencing of SNHG12 prevented viability and stimulated 
apoptosis and autophagy in LNCaP cells. Stimulating the PI3K/AKT/ 
mTOR pathway is a crucial downstream mechanism modulating 
SNHG12-mediated PCa progression [107]. The upregulated PCDRlnc1 
stimulated autophagy. Functionally, PCDRlnc1 interacted with UHRF1 
(ubiquitin-like with plant homeodomain and ring finger domains 1) and 
increased its transcription level in PCa cells, enabling the autophagic 
Beclin-1 signal [120]. For another example, lncRNA GDPD4–2 is 
engaged in PCa treatment via Astragaloside IV-PESV. The silenced 
GDPD4–2 inverted the therapeutic impacts of Astragaloside IV-PESV by 
modulating the PI3K/AKT/mTOR pathway. Functionally, GDPD4–2 
suppression decreased Beclin1 and LC3 expression and increased P62 
protein levels in LNCaP cells. These findings demonstrated that this drug 
prevents PCa development by modulating GDPD4–2 and autophagy 
[132]. 

5. LncRNAs involved in PCa cells’ resistance to treatments 

Multi-Drug Resistance (MDR) is cancer therapy’s critical main 
problem. It is defined as the innate and/or acquired ability of cancer 
cells to avoid the impacts of chemotherapeutics [1]. In innate drug 
resistance, tumor cells overexpress the expression level of 
tumor-promoting genes after administration of chemotherapeutic 
agents, decreasing tumor-suppressor genes to increase proliferation and 
cell cycle progression and inhibit apoptosis. They also acquired drug 
resistance from genetic instabilities and evolutionary mechanisms. 
Overall, the epigenetic modifications, drug efflux pumps, interactions, 
and bypass signaling pathways in the tumor microenvironment may lead 
to chemoresistance development [155]. The investigations indicate the 
function of lncRNA in the chemoresistance development in various 
cancers, especially PCa, so the impact of lncRNA in drug resistance can 
be different based on the function of lncRNAs and their targets [19]. As 
one of the lncRNAs involved in drug resistance, lncRNA HOXD-AS1 is 
upregulated in CRPC cells and closely correlates with lymph node 
metastasis and progression-free survival. In vitro and in vivo, the 
downregulated HOXD-AS1 prevented the proliferation and drug resis
tance of CRPC cells. Also, some cell cycle, drug resistance, and 
castration-resistance-associated genes, such as polo-like kinase 1 
(PLK1), cell division cycle 25 C (CDC25C), Aurora kinase A (AURKA), 
Forkhead Box M1 (FOXM1), and Ubiquitin-conjugating enzyme E2C 
(UBE2C), were identified and stimulated transcriptionally via 
HOXD-AS1. It is recognized that HOXD-AS1 employed WDR5 to 

modulate the target genes’ expression directly. Overall, HOXD-AS1 
stimulates proliferation, chemoresistance, and castration resistance in 
PCa through recruiting WDR5 [37]. Another study revealed that lncRNA 
LOXL1-AS1 and EGFR were at a low expression, while miR-let-7a-5p was 
overexpressed in doxorubicin-resistant PCa DU-145 cells. This miRNA 
could target epidermal growth factor receptor (EGFR) and lncRNA 
LOXL1-AS1, affecting PCa progression. Generally, the 
lncRNALOXL1-AS1/miR-let-7a-5p/EGFR axis notably affected prolifer
ation, apoptosis, and migration of doxorubicin-resistant DU-145 Cells, 
which can suggest a potential management method for drug-resistant 
PCa patients [3]. 

As mentioned earlier, NEAT1 was overexpressed in docetaxel- 
resistant PCa samples. The silenced NEAT1 resulted in a decrease in 
cell proliferation and invasion in docetaxel-resistant PCa cells. Func
tionally, NEAT1 participates in the docetaxel resistance by intensifying 
the expression of ACSL4 via sponging miR-204–5p and miR-34a-5p in 
PCa cells [53]. The expressions of another lncRNA, CCAT1, were over
expressed in PCa and Paclitaxel or PTX-resistant PCa cells. The sup
pressed CCAT1 prevented survival rate and stimulated apoptosis in cells 
after treatment with PTX [61]. Besides, the expression of lncRNA 
SNHG6 was upregulated in drug-resistant PCa tissues and cells. The 
suppressed SNHG6 increased the sensitivity of PTX-resistant PCa cells to 
PTX in vitro and in vivo and inhibited proliferation, migration, and in
vasion of PTX-resistant PCa cells in vitro. SNHG6 knockdown elevated 
the sensitivity of PTX-resistant PCa cells to PTX by sponging miR-186 as 
a tumor-suppressor, suggesting that SNHG6 can be a therapeutic factor 
for PCa [5]. Also, Linc00518 was upregulated in PCa, which was related 
to paclitaxel resistance. The deficiency of Linc00518 compromised the 
PTX-resistance in PCa cell lines [46]. DANCR was significantly upre
gulated in Docetaxel or DTX-resistant PCa. Suppressing DANCR 
increased the DTX efficacy in DTX-resistant PCa cells [75]. 

As a basic form of resistance, castration-resistant PC (CRPC) is 
considered an advanced form of malignancy that correlates with the 
poor survival of patients; this is a consequence of the insensitivity of PC 
cells to ADT due to the activation of alternative pathways for AR 
signaling. Some of these pathways controlled by lncRNA are mentioned 
in Fig. 2. In an interesting study, it has been shown that lncRNA-p21 is 
overexpressed in xenograft tissues derived from patients who have 
Neuroendocrine prostate cancer (NEPC) as a result of resistance to 
hormonal therapies. Antiandrogen enzalutamide (Enz), an effective 
drug increases the survival rate of CRPC patients, has also been shown to 
upregulate lncRNA-p21 expression contributing to neuroendocrine dif
ferentiation (NED). Functional in vitro analysis further revealed that 
exposure of cells to Enz led to upregulation of lncRNA-p21 by modu
lating AR activity, which in turn causes Enhancer of zeste homolog 2 
(EZH2)-mediated activation of STAT3 signaling. This signaling pathway 
has been reported to be involved in promoting neuroendocrine differ
entiation. Besides, in vivo studies demonstrated that the inhibition of 
EZH2 could dampen the neuroendocrine differentiation induced by Enz 
treatment in mice models, suggesting that targeting lncRNA-p21 may be 
an effective strategy in better management of CRPC patients in con
fronting the progression of NEPC [73]. LncRNA-PCAT1 is another 
oncogenic lncRNA that participates in the development of CRPC. AKT 
signaling pathway is activated by inhibiting AR signaling in 
PTEN-deficient, leading to castration resistance in patients. 
LncRNA-PCAT1 was reported to disturb an essential regulatory complex 
containing PH domain, and Leucine-rich repeats Protein Phosphatases 
(PHLPP), FK506-binding protein 51 (FKBP51), an inhibitor of nuclear 
factor kappa B (IKKα) by interacting with FKBP51 and displacing PHLPP 
from the complex, activating AKT and Nuclear factor kappa B (NF-κB) 
signaling. 

Furthermore, lncRNA-PCAT1 suppression hampered the CRPC pro
gression in mouse models. LINC00675 has also been involved in acti
vating AR singling in CRPC patients and androgen-insensitive cells. On 
the one hand, LINC00675 upregulation interacts with MDM2 protein, 
which diminishes AR ubiquitination and its subsequent degradation. On 
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the other hand, this lncRNA binds to GATA2 mRNA and stabilizes its 
expression, which functions as a co-activator of AR signaling, promoting 
in vitro and in vivo CRPC progression [131]. NEAT1, which was pre
viously mentioned to function as an oncogene in PCa progression, plays 
a crucial role in the docetaxel resistance of this malignancy. NEAT1 
suppression in Docetaxel resistant- PCa cells decreased ceRNA activity 
on the miR-34a tumor-suppressor and rescued RET expression as a 
miR-34a target. Subsequently, targeting the NEAT1/miR-34a/RET axis 
increased the docetaxel chemosensitivity of PCa cells in vitro and in vivo 
[100]. As another oncogenic lncRNA overexpressed through CRPC 
progression, lncRNA PCBP1-AS1 has been evidenced to increase 
AR/AR-complex deubiquitylation and inhibit its degradation, leading to 
castration resistance in PCa cells. However, PCBP1-AS1 suppression 
increased the sensitivity of resistant tumors and cells to enzalutamide 
treatment in vitro and in vivo [138]. AR signaling in CRPC is reported to 
be modulated by another tumor-suppressor, lncRNA, namely NXTAR 
(LOC105373241). This lncRNA is downregulated through prostate 
tumorigenesis and in PCa cells, playing a pivotal role in enzalutamide 
resistance. NXTAR upregulation through the activity of GCN5 histone 
acetyltransferase or pharmacologic restoration using (R)− 9b, 
ACK1/TNK2 small molecule inhibitor diminishes cell proliferation. It 
increases enzalutamide sensitivity in vivo and in vitro by down
regulating AR expression and signaling. Mechanistically, NXTAR binds 
to the upstream of the AR promoter and decreases AR-7 expression by 
recruiting EZH2. In turn, AR suppression by (R)− 9b also leads to the 
overexpression of NXTAR in positive feedback [36]. Additionally, 

SNHG17, which shows higher expression levels in PCa tumor samples 
and correlates with poor prognosis of patients, also participates in the 
resistance of PCa cells to Docetaxel. Consequently, SNHG17 suppression 
inhibited cell invasion and proliferation, diminished in vivo tumor 
growth, and increased Docetaxel chemosensitivity in C4–2 tumor cells 
[148]. 

6. Conclusion and perspectives 

Since lncRNA is involved in various aspects of prostate tumorigenesis 
through modulating major signaling pathways, they hold great promise 
as novel molecular targets for the treatment and prognosis of PCa. 
Targeting dysregulated lncRNAs could diminish in vitro and in vivo PCa 
progression, providing new therapeutic approaches for targeting tumor 
metastasis and recurrence. In particular, some of this dysregulated 
lncRNA regulates AR signaling and could be more effective in managing 
patient resistance to androgen deprivation therapy. However, some 
limitations and challenges must be addressed in applying lncRNAs in 
treating PCa. To be mentioned, humans and rodents share low conser
vation in the sequence and function of lncRNAs, which makes mecha
nistic and pre-clinical investigations more challenging. Hence, most 
functional studies are done in vitro, and the significance of target 
lncRNA should find its way to clinical levels. In this case, patient-derived 
tumor cells and xenografts (PDXs) are promising for more precise pre- 
clinical evaluation [93]. The other limitation concerns targeting 
lncRNAs, particularly oncogenic lncRNAs, because of their low 

Fig. 2. Castration-resistant PC (CRPC), an advanced form of cancer associated with a low patient survival rate, arises from PC cells’ resistance to androgen 
deprivation therapy (ADT) due to the activation of alternative AR signaling pathways in these cells. Fig. 2 demonstrates these lncRNA-controlled pathways. 
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abundance and nuclear localization. 
Nevertheless, antisense oligonucleotides (ASOs) technology may be a 

helpful tool to overcome these obstacles considering the nuclear 
enrichment of its effector, RNase H [58]. Besides, the innovations in 
CRISPR technology, such as RNA-guided endogenous CRISPR activation 
(CRISPRa), and viral delivery systems, such as lentiviruses, adenovi
ruses, and adeno-associated viruses (AAVs), have opened new avenues 
for targeted gene therapy [14,69]. A recent study reported that lncRNA 
XIST overexpression, mediated by adenovirus vectors, as a tumor sup
pressor suppressed in vitro and in vivo PCa cell proliferation and 
metastasis by targeting miR-23a expression [23]. Last but not least, 
considering the tissue-specific and tumor-specific expression of 
lncRNAs, their direct delivery for efficient activity and avoiding side 
effects is also a challenge in the clinical application of lncRNAs for PCa 
[116]. 
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