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A B S T R A C T

An enhanced boron nitrogen decorated carbon fullerene with the formula BNC18 (BNC)was investigated for sens-
ing the formaldehyde (FMA) pollutant. Density functional theory (DFT) calculations were performed to optimize
the pure C fullerene and the BNC one to prepare a comparative study of facile detection of FMA substance
through the formation of FMA@C and FMA@BNC complexes. The details of complexes were re-recognized by the
additional quantum theory of atoms in molecule (QTAIM) analyses, in which the formations of both of FMA@C
and FMA@BNC were confirmed. However, the BN-decoration enhancement provided a better interacting surface
for the BNC fullerene towards the FMA substance in comparison with the pure C fullerene. Moreover, the elec-
tronic molecular orbitals features indicated a significant sensing function for the BNC model by improving the
semiconductivity for recognizing the adsorbed substance. In this regard, the BNC fullerene was found suitable for
successfully approaching two terms of “recovery time” and “conductance rate” for sensing the FMA pollutant.

Introduction

It has been found that the innovation of nano materials and tech-
nologies encouraged the researches to work on this novel concept for
developing new functions and applications for various fields of scien-
tific and industrial areas [1–4]. Based on the extensive performed
works, the nanostructures have been seen very useful to show signifi-
cant structural and electronic features for working in complementary or
single-standing counterparts to approach more efficient results in com-
parison with the conventional materials and methods [5–8]. Accord-
ingly, several efforts were done for investigating modifications and re-
constructions of nanostructures after the pioneering carbon nanostruc-
tures for developing the targeted materials for the specific purposes
[9–12]. Especially in the case of human related systems and therapies,
several remarkable advantages were found for the nanostructures to be
involved in various types of therapeutic applications [13–16]. Addi-
tionally, the correct recognition of external substances was supposed as

one of the remarkable functions of nanostructures regarding their sens-
ing and detecting activities [17–20]. Indeed, the wide surface area of
nanostructures was seen very useful for providing an appropriate inter-
action media for adsorbing other substances and storages [21–24]. In
this regard, several efforts were dedicated to learn details of such reac-
tions and interactions, in which a general adsorbent phenomenon was
developed for the functions of nanostructures [25–28]. Not only the
pure carbon nanostructures, but also their modifications and deriva-
tives yielded more efficient features for involving in the specific appli-
cations and functions towards a selective substance [29–32]. To this
aim, the structural and electronic features were used to recognize the
considered models to show their availability and related functions
[33–36]. Accordingly, several architectures and compositions were sug-
gested for the nanostructures and their features were analyzed to char-
acterize them for a desired function [37–40]. Among such investigated
systems and models, atomic doped nanostructures were found interest-
ing by the useful impact of doped region for managing the electronic
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properties and activities of nanostructures in interactions with other
substances [41–43]. In this regard, the doped region part could work as
a moderator of interaction/adsorption process between the communi-
cating counterparts [44–46]. The results of earlier works indicated ben-
efits of employing the atomic doped nanostructures for adsorbing the
external substances in a more suitable condition than the original pure
nanostructures [47–49]. To do such analyses and recognitions, the com-
putational tools were found among the most versatile techniques for
providing informative insights into the investigated systems [50–54].
Accordingly, the current research work was done to investigate an issue
of a formaldehyde chemical substance adsorption by the assistance of a
doped model of fullerene nanostructure along with quantum computa-
tions.

Dealing with chemical pollutants has been always one of the main
problematic issues for both of environments and human health systems
[55–57]. Unfortunately, the existence of pollutants is not sometimes
temporary and they will remain in the environment for years with dif-
ferent direct and indirect harmful impacts for the normal health sys-
tems [58–60]. In this regard, developing sensor materials of such harm-
ful pollutants for their detection and removal is a crucial step for sus-
taining the biological systems [61–63]. To this aim, examining the sen-
sitive adsorbent materials and customizing them for adsorbing the spe-
cific substances could help to approach a success for the detection and
removal purposes [64–66]. Accordingly, the sensor function of a doped
fullerene nanostructure was assessed in this work towards one of the
most available chemical pollutants; formaldehyde, in the waste of all of
chemical laboratories and industries [67]. Because of rapidly spreading
in the environment, formaldehyde itself became a pollutant besides its
very important role for participating in so many chemical reactions and
productions [68]. To this point, a representative model of boron-
nitrogen decorated carbon (BNC) fullerene nanostructure was investi-
gated in the current work to assess the sensing process of formaldehyde
(FMA) substance through the occurrence of possible interaction/ad-
sorption processes. The fullerene and fullerene-like particles were
found as single-standing nanostructures especially for involving in the
interaction/adsorption processes [69–71]. The considered models were
characterized by optimizing the geometries and evaluating the struc-
tural and electronic features to approach two important sensing terms
of “recovery times” and “conductance rate” for the investigated adsorb-
ing system [72]. The investigated models were analyzed based on the
evaluated computational results as summarized in Tables 1-3 and Figs.
1-3.

Computational details

Models of this work including the representative pure C20 carbonfullerene (C) and its boron-nitrogen decorated derivative (BNC) were
optimized to obtain their minimized energy geometries. Next, the inter-
actions between each of already optimized C and BNC fullerenes and
the formaldehyde (FMA) substance were re-optimized to obtain the
minimized energy complexes; FMA@C and FMA@BNC (Fig. 1). After-
wards, details of interactions were extracted employing the quantum
theory of atoms in molecules (QTAIM) approach to detect the types and
features of involving interactions in the complexes [73]. Additionally,
energetic features of the structures and also those of the frontier molec-
ular orbitals were evaluated to learn the specifications of models re-
garding their structural and electronic terms. To this point, the complex

Table 1
Interaction/adsorption features of FMA@C and FMA@BNC complexes.
Complex EA kcal/mol Int. Dis. Å Rho au Del2-Rho au H au

FMA@C −2.21 O…C
H…C

2.85
2.71

0.0125
0.0086

0.0344
0.0237

0.0058
0.0011

FMA@BNC −22.39 O…B
H…N

1.56
2.35

0.1119
0.0483

0.5128
0.2936

−0.0601
0.0081

Fig. 1. Investigated models of this work including parental FMA, C, and BNC
fullerenes and the interacting FMA@C and FMA@BNC complexes.

models were analyzed by the interaction/adsorption energy of counter-
parts (EA) to yield the strength of complexes formations as indicated byEq. (1). The impact of basis set super position error (BSSE) on the value
of EA was also implemented in the equation [74].

(1)
Next, the energetic features of frontier molecular orbitals were ex-

tracted based on dominant energy levels of the highest occupied and
the lowest unoccupied molecular orbitals (HOMO and LUMO) as indi-
cated by Eqs. (2) - (5). The values of energy gap (GAP),%∆GAP, chemi-
cal potential (CP), and chemical hardness (CH) were obtained accord-
ingly. Additionally, distribution patterns of HOMO and LUMO and the
visualized electrostatic potential (ESP) surfaces of models were exhib-
ited in Fig. 2 besides showing the illustrated diagrams of density of
states (DOS) in Fig. 3. The evaluated results of EA and QTAIM features
of complexes including the types of involving interactions and their
specifications; density of all electrons (Rho), Laplacian of electron den-
sity (Del2-Rho), and energy density (H), were summarized in Table 1.
The effects of existing solvents media on the stabilities of complexes
(∆G) were also recognized by calculating the Gibbs free energy features
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Fig. 2. Distribution patterns of HOMO and LUMO and ESP of FMA, C, BNC, FMA@C, and FMA@BNC models.

in gas, oil, and water media using the polarizable continuum model
(PCM) and the results were listed in Table 2 [75]. Next, the frontier
molecular orbital features were summarized in Table 3 to assess the
structures based on their electronic specifications especially in the
states of before and after complex formations. Indeed, two important
terms of “recovery time” and “conductance rate” are mainly dependent
on the values of EA and GAP, respectively [72]. Accordingly, these fea-
tures could be used to assess the sensing function of employed
fullerenes for working towards the interaction/adsorption of FMA sub-
stance for revealing more insights into the developments of novel sen-
sor materials for the chemical pollutants. To this point, the current com-
putational work was explored by performing the wB97XD/6–31G*

quantum chemical density functional theory (DFT) calculations using
the Gaussian program in the 0 and 1 states of charge and multiplicity
[76–78]. The evaluated vibrational frequencies of optimized models
were also exhibited in the supplementary material. As a consequence,
the required data were evaluated and they were discussed to reach a
point of clearance for the investigated models systems by the advan-
tages of employing computational research tools and methodologies for
solving the scientific and even the industrial problems in a clear state
[79–83].

(2)
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Fig. 3. Illustrated DOS diagrams of C, BNC, FMA@C, and FMA@BNC models.

Table 2
Differences of Gibbs free energy of FMA@C and FMA@BNC complexes in gas,
oil, and water media.
Complex ∆GOil-Gas kcal/mol ∆GWater-Gas kcal/mol ∆GOil-Water kcal/mol

FMA@C −1.61 −2.08 0.48
FMA@BNC −7.01 −8.27 1.27

Table 3
Frontier molecular orbitals features of optimized models.
Model HOMO eV LUMO eV GAP eV %∆GAP CP eV CH eV

FMA −7.31 −1.15 6.16 n/a −4.23 3.08
C −5.05 −3.11 1.95 n/a −4.08 0.97
BNC −5.38 −3.16 2.21 n/a −4.27 1.11
FMA@C −4.95 −3.01 1.94 −0.43 −3.98 0.97
FMA@BNC −4.63 −3.68 0.95 −57.17 −4.16 0.47

(3)

(4)
(5)

Results and discussion

Considering the importance of developing novel sensor materials for
detection and removal of chemical pollutants led to the performance of
this work to explore a BN-decorated carbon (BNC) fullerene scaffold for
sensing the formaldehyde (FMA) substance. Indeed, the potential fea-
tures of nanostructures and their derivatives for involving in interac-
tion/adsorption processes encouraged the researchers to explore their
novel functions especially for working in the sensor materials. On the
other hand, customizing a nanostructure for adsorbing a chemical
species could be known as a crucial step of developing such needed ma-
terials. To this aim, learning details of interacting systems is very cru-
cial to propose the nanostructures for the specific target applications. In
this regard, all of covalent and non-covalent interactions should be
known for determining the level of structural stability of complex for-
mations between the pollutant adsorbate and the nanostructure adsor-
bent in addition to monitoring the electronic variations through the

complex formations. Accordingly, performing molecular computations
could yield details of structural and electronic features for the investi-
gating systems to recognize variations before and after the occurrence
of interaction/adsorption processes. Providing the informative descrip-
tors for the molecular systems could reveal insights into the develop-
ment of novel materials for the specific supplications, in which involv-
ing communications between FMA and BNC were investigated in this
work based on the evaluated descriptors (Tables 1-3 and Figs. 1-3).

Within the current work, the evaluated computed features were
used to analyze the models for revealing the sensor function specifica-
tions of the BNC adsorbent towards the FMA adsorbate. The structural
models were shown in Fig. 1 as they were divided into parental single
models of C and BNC fullerenes to interact with the FMA substance to
create the bimolecular models of interacting FMA@C and FMA@BNC
complexes. The involving interactions and their specifications for the
optimized interacting configurations were analyzed based on the evalu-
ated QTAIM features in addition to the interaction/adsorption energy
(EA) terms. Based on the quantitative results of Table 1 and the exhib-
ited models of Fig. 1, the successful formations of both of FMA@C and
FMA@BNC complexes were indicated along with the recognition of
their specifications by the involving interactions and energy terms. A
quick look at the geometries of complexes in Fig. 1 could reveal the dis-
tance of molecular counterparts from each other, in which the counter-
parts were optimized in a closer distance to each other in the
FMA@BNC model in comparison with the FMA@C model. But it should
be mentioned that the models were in suitable states regarding the en-
ergy values and the formations of both complexes were confirmed by
the evaluated QTAIM features. Comparing the EA of FMA@C
(−2.21 kcal/mol) and FMA@BNC (−22.39 kcal/mol) complexes indi-
cated the occurrence of a stronger interaction/adsorption process for
the formation of FMA@BNC complex in comparison with the FMA@C
complex. Accordingly, loser distances of counterparts were found in the
FMA@BNC complex than those of the FMA@C complex. The B and N
atomic decoration of pure carbon structure of C fullerene yielded an in-
teractive surface for the BNC fullerene towards the FMA polar sub-
stance. Indeed, this BN-decoration enhanced the BNC fullerene for
working as more appropriate surface for adsorbing the FMA substance
in comparison with the pure C fullerene. However, the pure C fullerene
was still able to adsorb the FMA substance to show the expected poten-
tial application of nanostructures for working as adsorbents, in which
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the BN-decoration enhanced it for working as a more appropriate sur-
face for approaching the desired purpose through the formation of a
stronger FMA@BNC complex.

The features of QTAIM analyses indicated the existence of O…C
(2.85 Å) and H…C (2.71 Å) interactions in the FMA@C complex from
the FMA counterpart to the C counterpart. On the other hand, O…B
(1.56 Å) and H…N (2.35 Å) interactions were found in the FMA@BNC
complex from the FMA counterpart to the BNC counterpart. In this step,
the models were detected by their involving interactions with a higher
electron concentration for the interactions of FMA@BNC complex in
comparison with the FMA@C complex based on the Rho and Del2-Rho
features of Table 1. Accordingly, observing a significant H value
(−0.0601 au) indicated the O…B interaction as the strongest one
among the complexes and the H…N interactions was placed at the next
level of strength (H = 0.0081 au). For the case of FMA@C complex,
O…C (H = 0.0058 au) and H…C (H = 0.0011 au) interactions were
placed at the next levels of strength. This achievement could affirm a re-
markable role of original C fullerene for the adsorption of FMA sub-
stance, in which the BN-decoration enhanced the fullerene for achiev-
ing a better result of interaction/adsorption process. As a consequence,
the idea of BN-decoration for managing a successful adsorption of FMA
substance was found achievable by comparing the obtained results of
BNC and C fullerenes to see a stronger integration/adsorption process
between the FMA and BNC counterparts.

After obtaining an approval of complex formations, the effects of oil
and water solvents on the stability of complexes were also explored by
evaluating the Gibbs free energy parameters in gas, oil, and water me-
dia. For running the calculations based on PCM approach, the isolated
phase was implied for the gas phase, the 1-octanol dielectric constant
included medium was implied for the oil phase, and the water dielectric
constant included medium was implied for the water medium. Accord-
ingly, the results were evaluated for comparing the stabilities of com-
plex models in different phase media. The values of ∆GOil-Gas,
∆GWater-Gas, and ∆GOil-Water were summarized in Table 2 as the varia-tions of Gibbs values of each complex in the comparable media. For the
FMA@C complex, the values of ∆GOil-Gas, ∆GWater-Gas, and ∆GOil-Waterwere found as −1.61, −2.08, and 0.48 kcal/mol, respectively. This com-
plex formation was defined by a better stability in both of oil and water
media in comparison with the gas phase, in which the water medium
was even more suitable for it in comparison with the oil medium. Be-
cause of formation of a bimolecular complex, a better interaction of
molecular system with the involving medium was seen for both of oil
and water medium with a priority of water medium. For the FMA@BNC
complex, the values of ∆GOil-Gas, ∆GWater-Gas, and ∆GOil-Water were foundas −7.01, −8.27, and 1.27 kcal/mol, respectively, to show better fea-
tures of BN-decorated model for stabilizing in the solvent media. The
water medium was found better than the oil medium and the
FMA@BNC model was able to be successfully achieved in both of oil
and water solvents. As a consequence, both of FMA@C and FMA@BNC
complexes could be still achievable in the solvent media with a higher
priority of formation of the FMA@BNC complex in comparison with the
FMA@C complex and a better suitability of the water solvent than the
oil solvent as found by the values of Gibbs free energy for the complexes
in different solvent media. It is worth to mention that the solvent effect
will be implemented in the PCM-based calculations by the dielectric
constants to be considered for the energy calculations resembling the
existence of a molecule model in the solvent media [75].

Frontier molecular orbitals features of optimized models including
the energy values of pure HOMO and LUMO levels and their related fea-
tures such as GAP,%ΔGAP, CP, and CH were summarized in Table 3. In
this step, the electronic variations of models before and after the inter-
action/adsorption processes were examined using the evaluated elec-
tronic features of models. For the original C and BNC fullerenes, the val-
ues of HOMO and LUMO were moved to lower levels as a result of BN-
decoration enhancement in the BNC fullerene. However, the energy gap

distance between HOMO and LUMO levels, as indicated by GAP, was
farther in the BNC fullerene comparing to the C fullerene. The more
conductive nature of pure C nanostructure was converted to the more
semiconductor nature of BNC fullerene to be useful for employing in the
sensor applications. The values of GAP in C (1.95 eV) and BNC
(2.21 eV) fullerenes affirmed a more semiconductivity for the BNC
fullerene comparing to the C fullerene. In this case, the values of CP andCH also showed such variations for the parental fullerene models due tothe BN-decoration enhancement. The levels of HOMO and LUMO de-
tected the new environment of complexes after the occurrence of inter-
action/adsorption processes, in which both levels detected the changes
in both of FMA@C and FMA@BNC complexes. However, the amount of
changes for the FMA@BNC fullerene was more significant than the
FMA@C fullerene comparing to each other or comparing to the
parental models. To assess such changes, the values of GAP indicated a
very shorter distance between HOMO and LUMO levels in the
FMA@BNC complex model whereas that of FMA@C complex was in-
deed very similar to the parental C fullerene model. The values of GAP
for the parental C (1.95 eV) and BNC (2.212 eV) fullerenes were
changed to new values in the FMA@C (1.94 eV) and FMA@BNC
(0.95 eV) complexes. The values of%ΔGAP showed such variations by
indicating −0.43 % and −57.17 % for the changes of GAP values form
the parental state to the complex state in the C and BNC related models.
As a consequence, the BN-decorated fullerene model was found very
much suitable for approaching a sensor material of FMA substance in
comparison with the C fullerene. Regarding the values of CP and CH,
more significant variations were found for the FMA@BNC complex in
contrast with the FMA@C complex. This achievement was an approval
of the initial idea of this work for enhancing the C fullerene though the
BN-decoration to prepare the BNC fullerene for a successful adsorption
of the FMA substance. Not only a stronger interaction/adsorption of
FMA was found for the BNC fullerene, but also the electronic features
indicated a better suitability of sensing functions for the BNC fullerene
by assessing the electronic variations between the parental and com-
plex models.

The distribution patterns in Fig. 2 exhibited the variations of HOMO
and LUMO levels, in which similar patterns were found for the parental
and complex models of C fullerene in contrast with significant changes
of patterns for the parental and complex models of BNC fullerene. The
LUMO pattern was almost located at the FMA counterpart and the
fullerene was vacant in the FMA@BNC complex; however, both of
HOMO and LUMO patterns were located at the surface of C fullerene in
the FMA@C complex. Examining the ESP surfaces for the parental
fullerenes could show a significance of BN-decoration enhancement by
providing a positive center (blue color) and a negative center (red
color) for the BNC fullerene in contrast with the mixed regions for C
fullerene.

The opposite color points of FMA and BNC fullerene were in a strong
interaction to form the FMA@BNC complex in comparison with a
weaker formation of the FMA@C complex. However, the continuous
ESP surface for both of FMA@C and FMA@BNC complexes indicated
the successful formation of both complexes through the occurrence of
meaningful interaction/adsorption processes. Additionally, the local-
ization of LUMO at the FMA counterpart of FMA@BNC complex made
that part of complex in a blue color mode to show the positive site or an
electron vacant place of the complex. Regarding the HOMO and LUMO
distribution patterns, the formation of complexes and their electronic
features were found for providing more insights into the idea assess-
ment of BN-decoration enhancement of C fullerene for working in a suc-
cessful sensing function of FMA substance. Additionally, the variations
of molecular orbital levels before HOMO and after LUMO for the
parental fullerenes and complex models were illustrated in the DOS dia-
grams of Fig. 3.

As discussed above, electronic variations of the FMA@BNC complex
were more significant than those of the FMA@C complex, in which the
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DOS diagrams indicated such changes in a clear mode. Especially for
the energy gap distance between HOMO and LUMO levels, that of
FMA@BNC complex was very significant in comparison with the
parental BNC fullerene whereas that of FMA@C complex was almost
negligible in comparison with the parental C complex. Accordingly, the
BN-decorated fullerene was a useful example of enhancing the C
fullerene for working in a more appropriate situation for adsorbing the
FMA substance. Returning to the crucial terms of “recovery time” and
“conductance rate”, both terms could be very well discussed for the
parental fullerenes and complexes in a comparable mode. By the assis-
tance of EA values, the recovery time could be recorded for both
fullerenes with a more significance for the BNC fullerene in comparison
with the C fullerene by the existence of a higher strength of interaction/
adsorption of FMA substance for the FMA@BNC complex formation in
comparison with the FAM@C complex. Hence, the recovery time of
FMA@BNC complex was supposed to be longer than that of FMA@C
complex, but both of them were achievable. By the assistance of%ΔGAP
values, the conductance rate could be recorded for both fullerenes still
with a more significance for the BNC fullerene in comparison with the C
fullerene. The change of GAP of C and FMA@BNC models was almost
negligible, but that of BNC and FMA@BNC models was very significant.
In this case, a better conductance rate could be recorded for the forma-
tion of FMA@BNC complex in comparison with the formation of
FMA@C complex. To summarize such achievements, it should be noted
that the formation of complex models yielded possibility of achieving
recovery time and their electronic variations yielded the chance of
recording the conductance rate. As a consequence, both terms of recov-
ery time and conductance rate were achievable for the BN-decorated
model very better than the C model as a significant benefit of employed
enhancement. Indeed, the existence of other atomic compositions in the
original nanostructures could enhance their capability for working in
more applications, which was observed by obtaining more useful fea-
tures for the BNC complex of this work.

Conclusions

Details of interaction/adsorption processes of FMA pollutant by the
assistance of an enhanced BNC fullerene was investigated by perform-
ing DFT calculations. The models were optimized and their electronic
features were evaluated for providing the required data to discuss the
targeted goal. The BN-decoration enhancement of C fullerene yielded a
longer GAP distance between HOMO and LUMO levels in the BNC
fullerene in comparison with the pure C fullerene, in which such GAP
helped to push forward a better sensing process of the FMA@BNC com-
plex formation in comparison with the FMA@C complex formation. In-
deed, the formation of both of FMA@C and FMA@BNC complexes was
achieved, but the interaction/adsorption strength of FMA@BNC com-
plex was more significant than that of the FMA@C complex. In this
case, the QTAIM results indicated the existence of two interactions in
each complex with a majority of strength and electronic features for the
formation of FMA@BNC complex. The results showed that the models
were detectable by the terms of recovery time and conductance rate, in
which the BN-decoration enhanced the features of BNC fullerene to ap-
proach better results in comparison with the pure C fullerene. Addition-
ally, examining the effects of solvent media on the stability of com-
plexes showed highlighted features for the FMA@BNC complex in both
of oil and water solvents especially for the water solvent. As a conse-
quence, the BN-decorated C fullerene worked as an appropriate adsor-
bent towards the interaction/adsorption processes of sensing the FMA
pollutant.
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