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A B S T R A C T   

The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae 
must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study 
modeled the algal biomass film, NO3–N concentration, and pH in the membrane bioreactor using the response 
surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the 
optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a 
structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. 
This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) =
0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing 
the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3–N 
and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The 
RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3–N con-
centrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration 
of 6.589 days. Similarly, the most favorable conditions for the NO3–N concentration and pH were 2.984 mg/L 
and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) 
to find the optimal NO3–N concentration, algal biomass film, and pH for product or process quality. The region 
has the greatest alkaline pH and lowest NO3–N content.   

1. Introduction 

Biomass from algae can be used to manufacture nutritional supple-
ments, renewable fuels, and wastewater treatment (Hussain et al., 
2021). There has been considerable interest worldwide in microalgae in 
recent years, especially due to their benefits in biofuel production 
(Banerjee et al., 2023); for example, they are high-yielding, have high 
lipid concentrations, and are capable of growing rapidly. Microalgae 
have been found to produce fatty acids that can be used to produce 

biofuels, but the cost of harvesting the biomass limits its commerciali-
zation. In addition, microalgae have the capacity to perform photosyn-
thesis, converting light energy into carbohydrates, while also engaging 
in the biosynthesis of proteins, lipids, and other compounds via several 
metabolic pathways (Su et al., 2023). Microalgae have a wide range of 
uses that include several fields, such as aquaculture, food production, 
biodiesel generation, agricultural fertilizer manufacture, and other 
associated disciplines (Amaro et al., 2023). On the other hand, Fig. 1 
demonstrates the link between wastewater, microalgae, machine 
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learning, and bioenergy. The evaluation was conducted using the 
VOSViewer software. By searching the Web of Science for the keywords 
“wastewater, microalgae, bioenergy, and machine learning,” the results 
were found. 

Algal biomass can be produced by suspension cultivation and 
immobilization cultivation (Garbowski et al., 2020). Among the main 
cultivation systems for suspension cultivation, there are open raceway 
ponds and closed photobioreactors (PBRs) (Yen et al., 2019). Although 
suspension cultivation of algal biomass is inexpensive, some disadvan-
tages exist, such as the low productivity of the biomass, the lengthy 
process of cultivation, potential environmental degradation, and the 
cost of collecting the biomass. A closed PBR is capable of high biomass 
concentrations due to the higher photosynthetic efficiency of algal cells 

(Gupta et al., 2015). In addition, optimizing the operation conditions in 
the suspension culture mode can further improve bioreactor perfor-
mance. Despite its advantages, suspension cultivation has a number of 
limitations, including high costs of biomass collection and bubble dis-
ruptions that hinder biomass growth. 

Recently, there have been proposals to circumvent these limitations 
using biofilm-based cultivation systems, in which algal cells attach 
themselves to the surface of the substrate and form a biofilm. In PBRs 
based on biofilms, microalgae cells are immobilized specifically to 
reduce harvesting costs and increase biomass productivity (Mantzorou 
and Ververidis, 2019). Furthermore, algal biofilms offer several advan-
tages over conventional cultivation techniques, including enhanced CO2 
mass transfer and higher environmental adaptation capacity. Moreover, 

Fig. 1. Several keywords are visualized in published research using the Web of Science (e.g., wastewater, microalgae, machine learning, and bioenergy).  
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Fig. 2. a) the flowchart depicting the construction and operation of an ANN, b) Depicts the design of the artificial neural network structure.  
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algae biofilms are known to have high photoconversion efficiency. 
Recent reports have described revolving biofilm reactors and twin-layer 
photo-bioreactors on a prototype scale (Schultze et al., 2015). 
Biofilm-based cultivation systems can yield low harvesting costs and 
increase biomass production. Disturbing the algal cell growth and 
adsorption of CO2 is challenging due to the shear stress caused by CO2 
bubbles (Zhang et al., 2018). However, bio-processes based on mem-
branes can be carried out with algae in some studies. In a wastewater 
treatment bioreactor using algae, the biomass is used as a soundproofing 
biofilm, and a light-driven photo-membrane bioreactor was also devel-
oped using algae (Asrami et al., 2023). Sonication of biomass can easily 
extract carbohydrates, proteins, and lipids from many algal strains 
(Yang et al., 2023). 

Numerous research investigations have examined the utilization of 
artificial neural networks (ANN) (Ahmad, 2022, Gasparin et al., 2022; 
Khan et al., 2022), response surface methodology (RSM), machine 
learning (Wang et al., 2020; Zhang et al., 2022), deep learning (Hu et al., 
2022, Aikhuele, 2023) and multi-objective optimization in various 
experimental contexts. The abovementioned algorithms have been 

employed to construct models, generate forecasts, and enhance the 
process and procedure. In this context, Hazrati et al. (2017) employed 
ANN to assess the efficacy of fouling management in membrane bio-
reactors when treating petrochemical effluent. The researchers discov-
ered that the optimal configuration consisted of 17 neurons in the 
hidden layer and two neurons in the output layer. The sensitivity anal-
ysis results indicate that the mixed liquid suspended solid (MLSS) 
parameter has the highest transmembrane pressure (TMP) sensitivity, 
whereas time has the lowest sensitivity (Hazrati et al., 2017). In a 
separate investigation, Schmitt et al. (2017) conducted a comprehensive 
analysis of multiple papers on the utilization of ANN to optimize 
membrane bioreactors (Schmitt and Do, 2017). In a separate investi-
gation, Chen et al. (2021) employed ANN as a predictive tool for esti-
mating the viscosity of microalgae slurry during hydrolysis. The 
researchers observed a high level of agreement between the ANN model 
and the experimental data (Chen et al., 2021). 

Furthermore, based on the evaluation metrics such as coefficient 
(R2), mean square error (MSE), and MAE, it can be concluded that the 
ANN model exhibited high accuracy (Meng et al., 2022). The findings of 

Table 1a 
ANOVA results for algal biomass film.  

Source Sum of Squares df Mean Square F-value p-value  

Model 1484.24 14 106.02 283.27 <0.0001 significant 
A-Carbon dioxide concentration 8.05 1 8.05 21.50 0.0002  
B-Time 130.11 1 130.11 347.63 <0.0001  
AB 0.8637 1 0.8637 2.31 0.1444  
A2 0.3851 1 0.3851 1.03 0.3226  
B2 19.67 1 19.67 52.56 <0.0001  
A2B 11.52 1 11.52 30.78 <0.0001  
AB2 3.21 1 3.21 8.59 0.0083  
A3 12.39 1 12.39 33.09 <0.0001  
B3 1.62 1 1.62 4.34 0.0502  
A2B2 21.78 1 21.78 58.18 <0.0001  
A3B 0.2438 1 0.2438 0.6514 0.4291  
AB3 0.1824 1 0.1824 0.4873 0.4932  
A⁴⁴ 1.44 1 1.44 3.85 0.0639  
B⁴⁴ 1.50 1 1.50 4.00 0.0593  
Residual 7.49 20 0.3743    
Cor Total 1491.72 34     

Std. Dev. 0.6118  R2 0.9950 PRESS 27.84 
Mean 18.29  Adjusted R2 0.9915 ¡2 Log Likelihood 45.34 
C.V. % 3.35  Predicted R2 0.9813 BIC 98.67    

Adeq Precision 55.3385 AICc 100.60  

Table 1b 
ANOVA results for NO3–N concentration.  

Source Sum of Squares df Mean Square F-value p-value  

Model 2.88 14 0.2059 185.23 <0.0001 significant 
A-Carbon dioxide concentration 0.0211 1 0.0211 18.94 0.0002  
B-Time 0.2822 1 0.2822 253.81 <0.0001  
AB 0.0018 1 0.0018 1.63 0.2139  
A2 0.0095 1 0.0095 8.58 0.0071  
B2 0.0283 1 0.0283 25.43 <0.0001  
A2B 0.0059 1 0.0059 5.32 0.0296  
AB2 0.0026 1 0.0026 2.34 0.1387  
A3 0.0214 1 0.0214 19.21 0.0002  
B3 0.0083 1 0.0083 7.45 0.0115  
A2B2 0.0077 1 0.0077 6.89 0.0146  
A3B 0.0026 1 0.0026 2.30 0.1417  
AB3 0.0002 1 0.0002 0.2138 0.6478  
A⁴⁴ 0.0044 1 0.0044 3.98 0.0572  
B⁴⁴ 0.0055 1 0.0055 4.99 0.0347  
Residual 0.0278 25 0.0011    
Cor Total 2.91 39     

Std. Dev. 0.0333  R2 0.9905 PRESS 0.0974 
Mean 1.01  Adjusted R2 0.9851 ¡2 Log Likelihood − 177.36 
C.V. % 3.30  Predicted R2 0.9665 BIC − 122.03    

Adeq Precision 41.9263 AICc − 127.36  
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their study demonstrated the feasibility of utilizing ANN models to 
evaluate the viscosity of microalgae slurry. Pendashteh et al. (2011) 
employed ANN to simulate membrane bioreactors in a separate inves-
tigation. The researchers discovered that at an organic loading rate 
(OLR) of 2.44 kg chemical oxygen demand (COD) per day per cubic 
meter, the total dissolved solids (TDS) concentration reached 78,000 
mg/L, and the reaction duration was 40 h, resulting in an average COD 
elimination efficiency of 98%. Under these circumstances, the concen-
tration of COD in the effluent was found to be below 100 mg/L, which is 
below the permissible limits for discharge (Pendashteh et al., 2011). 

Furthermore, Schmitt et al. (2018) employed ANN as a predictive 
tool for membrane fouling in membrane bioreactors (MBRs). A total of 
ten distinct parameters were included as inputs to the ANN architecture. 
The researchers concluded that ANNs have significant potential for 
effectively addressing this application (Schmitt et al., 2018). Ibrahim 
et al. (2020) employed ANN to optimize membrane bioreactors. The 
researchers discovered that the ANN demonstrates a high level of ac-
curacy in predicting the permeate flux of membrane bioreactor filtration 
(Ibrahim et al., 2020). 

The primary objective of the current investigation is to develop a 
model that can accurately predict and optimize the behavior of algal 
film biomass, pH, and NO3–N concentration in a membrane bioreactor. 
The acquisition of process data has been accomplished by research 
conducted by Zhang et al. (2018) (Zhang et al., 2018). The experimental 
condition involved exposing the samples to a range of CO2 concentra-
tions, specifically varying from 0% to 10%, for a duration from 0 to 7 
days. Initially, the behavior of algal film biomass, pH, and NO3–N con-
centration was modeled using the RSM. Subsequently, the parameters 
mentioned above are represented using ANN. An ANN’s optimal archi-
tecture has been selected to model the behavior of algal film biomass, 
pH, and NO3–N concentration. The optimization of algal film biomass, 
pH, and NO3–N concentration behavior has been successfully achieved 
by implementing RSM. 

2. Material and methods 

2.1. Response surface methodology (RSM) 

The RSM is a robust statistical technique widely employed in various 
scientific and engineering domains to optimize and model intricate 
systems effectively. The creation of RSM in the mid-twentieth century 
has rendered it an indispensable instrument for researchers and engi-
neers in the execution of experiments, exploration of connections among 

several components, and achievement of optimal outcomes with limited 
resources. The fundamental concept underlies RSM is constructing an 
approximation of a system’s response surface. This approximation en-
ables researchers to predict the ideal settings for factors, determine the 
significant impact variables, and explore the system’s behavior within 
the experimental region (Bezerra et al., 2008). 

One of the critical features of RSM is its ability to effectively manage 
intricate and non-linear relationships among variables. The RSM utilizes 
a polynomial model to estimate the proper response surface inside the 
experimental region by conducting a series of experimental runs. This 
enables researchers to enhance the system’s performance without 
incurring the expenses and time constraints of conducting elaborate 
tests. Moreover, the RSM enables the integration of linear and quadratic 
effects, rendering it well-suited for assessing intricate systems charac-
terized by higher-order interactions. Due to its versatile nature, the 
utilization of RSM is prevalent across diverse sectors, including chemical 
engineering, manufacturing, agriculture, and medicine (Myers et al., 
2004). 

Despite the numerous advantages of RSM, certain limitations need to 
be acknowledged. The model’s accuracy heavily depends on selecting an 
experimental design and assuming a response surface that behaves 
predictably. Undesirable consequences may arise as a consequence of 
deviations from these principles. Consequently, researchers must exer-
cise caution in interpreting the model’s predictions and diligently verify 
the outcomes by supplementary testing. However, when implemented 
and assessed correctly, the RSM is essential for optimizing intricate 
systems, generating valuable insights, and advancing scientific and en-
gineering research (Kleijnen, 2008). 

2.2. Artificial neural networks (ANN) 

The utilization of ANNs, derived from investigating the human brain, 
has emerged as a computational instrument in various scientific and 
technical fields. This study employs an ANN approach to model and 
forecast the relationship among multiple variables inside an experi-
mental setting. ANN architectures consist of interconnected networks 
organized hierarchically. Each node inside these networks represents a 
neuron responsible for processing information. These neurons commu-
nicate with one another through dense connections. ANN models have 
the ability to effectively capture intricate correlations in data that may 
be challenging to visualize using traditional statistical models. This is 
mainly attributed to their inherent capacity to learn from and adapt to 
nonlinear and complex patterns within the data. In order to use the ANN 

Table 1c 
ANOVA results for pH.  

Source Sum of Squares df Mean Square F-value p-value  

Model 26.51 14 1.89 97.22 <0.0001 significant 
A-Carbon dioxide concentration 1.86 1 1.86 95.32 <0.0001  
B-Time 0.8761 1 0.8761 44.98 <0.0001  
AB 0.2669 1 0.2669 13.71 0.0011  
A2 0.6057 1 0.6057 31.10 <0.0001  
B2 0.2962 1 0.2962 15.21 0.0006  
A2B 0.0262 1 0.0262 1.35 0.2569  
AB2 0.0409 1 0.0409 2.10 0.1595  
A3 1.49 1 1.49 76.34 <0.0001  
B3 0.0085 1 0.0085 0.4369 0.5147  
A2B2 0.0141 1 0.0141 0.7251 0.4026  
A3B 0.1362 1 0.1362 7.00 0.0139  
AB3 0.0003 1 0.0003 0.0133 0.9092  
A⁴⁴ 0.6088 1 0.6088 31.26 <0.0001  
B⁴⁴ 0.0748 1 0.0748 3.84 0.0613  
Residual 0.4869 25 0.0195    
Cor Total 26.99 39     

Std. Dev. 0.1396  R2 0.9820 PRESS 1.67 
Mean 8.09  Adjusted R2 0.9719 ¡2 Log Likelihood − 62.83 
C.V. % 1.73  Predicted R2 0.9382 BIC − 7.50    

Adeq Precision 31.2723 AICc − 12.83  
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methodology, it is necessary to initially collect comprehensive data, 
including the characteristics of the input variables and the correspond-
ing experimental outcomes (Agatonovic-Kustrin and Beresford, 2000). 

In order to enhance the performance of the model, the dataset is 
partitioned into many subsets that are used for training, validation, and 
testing objectives. Following this, the construction of the ANN model 
framework is undertaken. During this step, the ideal number of hidden 
layers and neurons is determined for each layer. The requisite function is 
then formulated. The backpropagation strategy is utilized in training the 
model, wherein the links are assigned incorrect weights, and the data is 
effectively utilized to minimize the error in output prediction during the 

training phase. 
Different metrics, such as MSE and correlation R2, were employed to 

assess the performance of the Trained ANN model by comparing its 
projected values to experimental results on test data. Furthermore, a 
sensitivity analysis was performed to ascertain the statistical relevance 
of the material in deciding the outcome (Bourquin et al., 1998). 

The ANN methodology is implemented using Python and widely 
adopted libraries such as TensorFlow or PyTorch. Modern processing 
devices, specifically Graphics Processing Units (GPUs), are also lever-
aged to expedite training. This study aims to improve methodology by 
incorporating the neural network approach, a widely used technology 

Fig. 3. Algal biomass behavior RSM model a) contour, and b) 3D graphs. NO3–N concentration, and pH behavior RSM model c, e) contour, and d, f) 3D graphs.  
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renowned for its rigorous investigation and real-world implementations 
across several domains. This methodology aims to foster a comprehen-
sive understanding of the experimental relationships and provide pre-
cise predictions. 

The flowchart of the ANN is shown in Fig. 2a. The flowchart offers a 
graphical representation of the respective methodologies and illustrates 
the sequential steps involved in the ANN process. The dataset should be 
gathered and organized to include input characteristics (x1, x2, …, xn) 
and their corresponding goal output (y). In order to enhance the effi-
ciency of training, it is necessary to normalize or standardize the input 
data to guarantee consistency and uniformity. The connections between 
the input nodes and the hidden layer are assigned initial random weights 
(w1, w2, …, wn). The weighted total of inputs at each neuron in the 
hidden layer is computed by applying the activation function. To assess 
the accuracy of the model’s predictions, it is necessary to compare the 
anticipated output with the actual target output and calculate the 
resulting error. The weights should be adjusted by the use of gradient 
descent in order to reduce the mistake. This process includes the 
calculation of gradients and the subsequent adjustment of weights. 
Determine if the model has achieved convergence conditions, such as 
meeting a minimum error level. Once convergence is attained, the 
trained model becomes prepared for making predictions. Utilize the 
training to generate predictions on novel, unobserved data. 

As shown in Fig. 2b, this study utilizes an ANN consisting of two 
layers of five neurons with tansigmoid and logsimoid transfer functions. 
The network takes CO2 Concentration (g/l) and Time (d) parameters as 
input and aims to predict the Algal Film Biomass (g/m2), pH, and NO3–N 
(g/L) target variables. 

2.3. NSGA-II 

The non-dominated sorting genetic algorithm II (NSGA-II) is a widely 
recognized approach for multi-objective optimization problems, which 
has been employed in this study to resolve such concerns. The NSGA-II 
method is a genetic algorithm extension designed to maximize several 
objectives and provide non-dominant solutions, previously referred to as 
Pareto fronts. The method operates on a population of potential solu-
tions, each representing a set of diverse measurements for the optimi-
zation problem (Amiri et al., 2023). 

The NSGA-II algorithm is utilized in this research to optimize the 

experimental settings when there are several conflicting objectives. 
Initially, the optimization problem’s objectives and constraints are 
delineated to establish a clear and concise mathematical representation. 

Afterward, random or semi-random sampling methods fill the 
parameter space with potential solutions, increasing the diversity. 
Following this, a mathematical function is used to evaluate the replies 
given by each candidate, and their suitability is determined by evalu-
ating the strengths and weaknesses of their answers concerning other 
options. The NSGA-II selection process, when in optimal condition, 
upholds the principles of non-segregation and remote crowding, hence 
promoting diversity and a well-balanced exploration and exploitation of 
the search space. The candidate solutions undergo iterative adjustments 
to their fitness and gradually converge towards the Pareto front 
throughout multiple generations, facilitated by genetic interventions 
such as crossover and mutation. The optimization technique is itera-
tively employed multiple times to provide a high-quality set of non- 
dominant solutions that effectively capture the tradeoff inherent in the 
conflicting objectives of the brand (Zahmatkesh et al., 2023). 

The NSGA-II algorithm is implemented in a programming language 
appropriate for the task, such as Python or C++. Its effectiveness is 
evaluated using hyper-volume, throughput, and distance metrics. This 
research aims to improve the understanding of multi-objective optimi-
zation in experimental and decision-making systems in various real- 
world contexts using the NSGA-II approach. 

3. Results and discussions 

3.1. RSM modeling results 

This study utilizes the findings of Zhang et al. (2018) to construct a 
model and propose correlations for each component (Zhang et al., 
2018). When expressed in terms of the actual factors, the equation en-
ables the generation of predictions for the reaction at specific levels of 
each factor. It is imperative to provide explicit specifications for each 
factor’s original units. The empirical equations presented in this study 
demonstrate the interdependence between algal biomass film, NO3–N 
concentration, and pH. The equations established from the RSM model 
are founded upon time and CO2 concentration variables. These equa-
tions forecast the behavior of algal biomass film, NO3–N concentration, 
and pH. The equations were developed utilizing the quartic model. 

Fig. 3. (continued). 
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Fig. 4. Residual, and predict-actual graphs for a, b) algal biomass film, c, d) NO3–N concentration, e, f) pH behavior.  

Algal biomass film= +7.35886 + 5.71286×CO2− 3.03818×Time+2.00535×CO2 × Time − 2.42677×CO2
2+2.44420×Time2 − 0.166918

× CO2
2 ∗ Time − 0.199905×CO2 × Time2+0.276526×CO2

3 − 0.434100×Time3+0.021917×CO2
2 × Time2 − 0.002527×CO2

3×Time − 0.003667×CO2

× Time3 − 0.009117×CO2⁴+0.025718×Time⁴ (1)  

CO2 concentration= +1.37968 + 0.013942×CO2+0.072629×Time − 0.039295CO2 × Time − 0.024502×CO2
2 − 0.092394×Time2 + 0.006100

× CO2
2×Time+0.003228×CO2 × Time2+0.007017×CO2

3+0.015527×Time3 − 0.000291×CO2
2 × Time2 − 0.000211×CO2

3 × Time − 0.000080×CO2

× Time3 − 0.000473×CO2⁴ − 0.000783×Time⁴ (2)  

pH= +6.89963 − 0.361661×CO2+0.096105×Time+0.062682CO2 × Time+0.380231×CO2
2+0.235813×Time2 − 0.025029CO2

2 × Time − 0.002423×CO2

× Time2 − 0.089716×CO2
3 − 0.049037×Time3+0.000395×CO2

2 × Time2+0.001543×CO2
3 × Time+0.000083×CO2

× Time3+0.005546×CO2⁴+0.002874×Time⁴
(3)   
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The analysis of variance (ANOVA) outcomes for the RSM model 
about the behavior of algal biomass film, NO3–N concentration, and pH 
are presented in Tables 1–3. Additionally, factor coding is systematically 
organized and standardized. Additionally, it should be noted that the 
sum of squares is classified as type III, specifically in the context of 
partial effects. 

Table 1a displays the ANOVA results of the RSM model investigating 
the behavior of algal biomass film. The obtained F-value of 283.27 
suggests that the model is statistically significant. A large F-value of this 
magnitude may occur due to random variation in only 0.01% of in-
stances. The significance of model terms is established when the P-value 
is below the threshold of 0.0500. The essential model variables in this 
scenario include A, B, B2, A2B, AB2, A3, and A2B2. Values greater than 
0.1000 indicate that the model terms lack significance. The application 
of model reduction techniques can be beneficial for improving a model 
when it has many insignificant model terms, except those essential for 
maintaining hierarchy. The Predicted R2 value of 0.9813 closely ap-
proximates the Adjusted R2 value of 0.9915, with a difference of less 
than 0.2. Adeq Precision conducts the measurement of the signal-to- 
noise ratio. A ratio over four is favored. The ratio of 55.338 indicates 
that the signal is sufficient. This paradigm demonstrates utility in 
effectively navigating the design space. 

Table 1b presents the ANOVA outcomes for the RSM model accord-
ing to the behavior of NO3–N concentration. The obtained Model F-value 
of 185.23 suggests that the model has statistical significance. The 
probability of observing an F-value of this magnitude due to random 
variation is extremely low, at less than 0.01%. P-values below the 
threshold of 0.0500 indicate statistical significance for the model terms. 
The essential model variables in this circumstance are denoted as A, B, 
A2, B2, A2B, A3, B3, A2B2, and B4. Values greater than 0.1000 indicate 
that the model terms lack statistical significance. The application of 
model reduction techniques could improve the performance of a model 
that contains many model terms that are deemed unnecessary, except 
those that are essential for maintaining a hierarchical structure. The 
difference between the Predicted R2 value of 0.9665 and the Adjusted R2 

value of 0.9851 is smaller than 0.2. Adeq Precision is responsible for the 
computation of the signal-to-noise ratio. A ratio beyond four is deemed 
more favorable. The ratio of 41.926 exhibits a satisfactory level of signal 
strength. The utilization of this paradigm has the potential to facilitate 
exploration inside the design space. 

Table 1c presents the ANOVA outcomes for the RSM model according 
to the behavior of pH. The model exhibits a high significance level, 

evidenced by the Model F-value of 97.22. A large F-value of this 
magnitude may occur due to random variation in only 0.01% of in-
stances. Model terms are deemed statistically significant if their P-values 
are below 0.0500. In this case, the significant model terms encompass A, 
B, AB, A2, B2, A3, A3B, and A4. Model terms are considered statistically 
insignificant if their p-value exceeds the threshold of 0.1000. The model 
reduction process could improve a model’s performance by eliminating 
extraneous terms, except those necessary for maintaining hierarchical 
structure. The difference between the Predicted R2 value of 0.9382 and 
the Adjusted R2 value of 0.9719 is below the threshold of 0.2, indicating 
a reasonable level of concordance. The measurement of the signal-to- 
noise ratio is conducted using Adeq Precision. A minimum ratio of 4 is 
desired. The strength of the signal is deemed sufficient, as evidenced by 
the ratio of 31.272. In order to navigate through the design area, it is 
recommended to employ the utilization of this particular model. 

A contour and three-dimensional representation of the algal biomass 
film can be seen in Fig. 3a and b. It has become abundantly clear that 
higher amounts of algal biomass film have been discovered for longer 
durations and in response to a wide range of CO2 concentrations. For 
clarity, it has been noticed that the highest levels of algal biomass film 
may be achieved within four to seven days, concurrently with a con-
centration of carbon dioxide ranging from 1.5 to 4.5 percent. As can be 
seen, higher values of algal biomass film have been observed at higher 
times in different CO2 concentrations. In addition, the sensitivity of algal 
biomass film to CO2 is higher than time. 

Fig. 3c–f displays a contour and three-dimensional graph illustrating 
the concentration of NO3–N and pH. Elevated levels of NO3–N concen-
tration have been recorded throughout shorter periods and in the 
presence of greater CO2 concentrations. To clarify, the highest levels of 
NO3–N concentration were seen within 0–3 days, and when CO2 con-
centration reached 6–10%. Elevated pH levels with reduced quantities 
of carbon dioxide have been documented for extended periods. To 
clarify, the uppermost pH levels have been attained within 5–7 days, 
accompanied by CO2 concentrations ranging from 0 to 4%. Moreover, 
when exposed to elevated levels of carbon dioxide exceeding 4.5, the 
alterations in pH resulting from temporal variations are minimal. In 
addition, it observed sharp trends in pH behavior for the process. 

Fig. 4a–f displays the graphical representations of the residual and 
actual-predict models for the behavior of algal biomass film, NO3–N 
concentration, and pH. The distance between the points on the diagonal 
line determines the criterion for agreement between experimental and 
anticipated values. The degree of agreement between experimental and 

Fig. 4. (continued). 
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predicted values is determined by calculating the spacing of the dots on 
the diagonal line. Based on the abovementioned observations, the pro-
posed model is notable in accurately forecasting the pH, NO3–N con-
centration, and algal biomass film—the behavior of microalgae in a 
membrane bioreactor. 

3.2. RSM optimization 

The RSM method was employed to optimize the behavior of algal 
biomass film, NO3–N concentration, and pH concerning time and CO2 
concentration. In this context, it is imperative to decrease the concen-
tration of CO2 and maximize the pH level. 

Table S1 presents the ten optimal modes that were identified for the 
production of algal biomass films. Additionally, Table S2 presents the 

Fig. 5. Contour and 3D graphs of RSM optimization for algal biomass, NO3–N concentration, and pH.  
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ten optimal modes identified for the concentration of NO3–N and pH. 
The optimal conditions for the growth of algal biomass film were seen at 
a carbon dioxide concentration of 2.884 mg/L and a duration of 6.589 
days. Furthermore, it was observed that the most favorable conditions 
for achieving optimal NO3–N concentration and pH levels were attained 
when the CO2 concentration reached a value of 2.984 mg/L, and the 
experiment lasted 6.787 days. Fig. 5a-f displays contour and three- 
dimensional graphs depicting the RSM optimization model for the 
algal biomass film, NO3–N concentration, and pH. 

3.3. ANN modeling results 

This part presents the introduction of ANN modeling for the exper-
imental data of Zhang et al. (2018), explicitly focusing on algal biomass 
film concentration, nitrogen concentration, and pH. The inputs in this 
study encompassed time and carbon dioxide concentration, while the 
outputs consisted of algal biomass film concentration, nitrogen con-
centration, and pH. Table 2 displays the introduction and accuracy pa-
rameters of the ANN developed to forecast the algal biomass film. Based 
on the data presented in Tables 2 and it can be observed that the ANN 
model, characterized by a 5-3 structure and employing the tansig-logsig 
transfer function, exhibits the highest level of accuracy. This is 

evidenced by the values of R2 (9.98E-01), R (9.99E-01), MAE 
(8.56E-02), and MSE (1.43E-01). Consequently, this model can predict 
the growth of algal biomass film effectively. 

Table 3 presents the parameters of the establishment and precision of 
the ANN developed for determining NO3–N concentration and pH. Based 
on the provided Tables 3 and it can be observed that the ANN model, 
characterized by a 5-5 structure and employing the tansig-logsig transfer 
function, exhibits the highest level of accuracy. This is evidenced by the 
values of R2 (9.96E-01), R (9.98E-01), MAE (1.62E-03), and MSE (2.62E- 

Fig. 5. (continued). 

Table 2 
Structure and accuracy parameters of artificial neural network for algal biomass 
film.  

row structure transfer function R2 R MAE MSE 

1 2 2 Tansig tansig 9.94E- 
01 

9.97E- 
01 

2.47E- 
01 

3.85E- 
01 

2 2 5 Tansig tansig 9.94E- 
01 

9.97E- 
01 

2.37E- 
01 

3.36E- 
01 

3 3 3 logsig logsig 9.96E- 
01 

9.98E- 
01 

1.50E- 
01 

1.88E- 
01 

4 5 3 Tansig tansig 9.97E- 
01 

9.98E- 
01 

1.48E- 
01 

2.13E- 
01 

5 5 3 tansig logsig 9.98E- 
01 

9.99E- 
01 

8.56E- 
02 

1.43E- 
01  

Table 3 
Structure and accuracy parameters of artificial neural network NO3–N concen-
tration and pH.  

row structure transfer function R2 R MAE MSE 

1 1 1 tansig tansig 7.27E- 
01 

8.55E- 
01 

6.79E- 
02 

1.96E- 
01 

2 1 1 logsig tansig 8.23E- 
01 

9.11E- 
01 

6.19E- 
02 

1.74E- 
01 

3 1 1 logsig logsig 8.40E- 
01 

9.22E- 
01 

6.15E- 
02 

1.71E- 
01 

4 1 3 logsig logsig 8.45E- 
01 

9.20E- 
01 

5.30E- 
02 

1.50E- 
01 

5 1 1 tansig tansig 8.10E- 
01 

9.03E- 
01 

5.29E- 
02 

1.55E- 
01 

6 2 1 logsig tansig 8.18E- 
01 

9.09E- 
01 

4.12E- 
02 

1.49E- 
01 

7 2 1 tansig logsig 7.93E- 
01 

8.91E- 
01 

1.26E- 
02 

8.75E- 
02 

8 2 2 tansig tansig 9.36E- 
01 

9.68E- 
01 

9.65E- 
03 

7.59E- 
02 

9 2 2 logsig logsig 9.62E- 
01 

9.81E- 
01 

5.99E- 
03 

5.64E- 
02 

10 2 3 logsig tansig 9.74E- 
01 

9.87E- 
01 

3.40E- 
03 

4.29E- 
02 

11 2 5 logsig tansig 9.82E- 
01 

9.91E- 
01 

2.41E- 
03 

2.87E- 
02 

12 5 3 logsig logsig 9.74E- 
01 

9.87E- 
01 

1.82E- 
03 

3.10E- 
02 

13 5 5 logsig logsig 9.96E- 
01 

9.98E- 
01 

1.62E- 
03 

2.26E- 
02  
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02). Consequently, this model demonstrates accurate prediction capa-
bilities for NO3–N concentration and pH. 

Fig. 6a and b displays a scatter plot featuring two distinct lines, one 
representing the MAE and the other representing the MSE. The x-axis is 
designated as “Structure Number,” while the y-axis represents “MAE/ 
MSE.” The lines representing MAE and MSE are colored yellow and blue, 
respectively. The data points are visually represented as circular shapes. 
Based on the graphical representation, it can be shown that the ANN 
model, namely the one with a 5-5 structure, exhibits the highest level of 
accuracy. This is evident from the calculated metrics, including a mean 
absolute error of 1.62E-03, a MSE of 2.26E-02, and a R2 of determination 
of 9.96E-01. 

Furthermore, it is worth noting that the ANN model employed in this 
study for predicting Algal biomass film exhibits a 5-3 structure. Notably, 
this model demonstrates the highest level of accuracy, as seen by the 
following performance metrics: MAE of 8.56E-02, MSE of 1.43E-01, and 
a R2 of 9.98E-01. Consequently, this model can effectively forecast 
NO3–N concentration, pH levels, and Algal biomass film laboratory 

measurements. 
Fig. 6c–e displays the most suitable distribution for three variables: 

a) concentration of NO3–N (in grams per liter), b) pH level, and c) algal 
biomass films (in grams per square meter). The x-axis represents the 
experimental data, while the y-axis represents the data obtained from 
the ANN. Purple triangles, green squares, and blue diamond’s represent 
data points. The black line, denoted as the “Equality Line,” is the most 
suitable option. The red circle denoting “Max error” exhibits values of 
12.18%, 3.53%, and 2.32% for the algal biomass films, NO3–N con-
centration, and pH. The presented graphic demonstrates a strong 
agreement between the data generated by the neural network’s pre-
dictions and the corresponding experimental data. The disparity be-
tween projected and experimental results is most pronounced in the case 
of algal biomass films but to a very negligible extent. 

Consequently, the neural network model demonstrates a remarkable 
ability to forecast experimental results accurately. The results of AI 
modeling conform well with the other studies that used ANN for 
chemical process prediction and modeling because ANN modeling has 

Fig. 6. Accuracy parameters of artificial neural network designed for a) NO3–N concentration and pH. b) algal biomass film. Chart of matching of experimental data 
and predicted data by artificial neural network model for c) NO3–N concentration (g/L), d) pH, e) algal biomass films (g/m2). Residual graph of predicted data by 
artificial neural network model for f) NO3–N concentration (g/L), g) pH, h) Algal biomass films (g/m2). 
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Fig. 6. (continued). 
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shown good accuracy in predicting the process behavior according to 
experimental data. 

The residual plan depicted in Fig. 6f-h exhibits a combination of 
green and blue data points accompanied by blue lines. The x-axis of the 
graph is labeled as “ANN data for a) concentration of NO3–N (g/L), b) 
pH, and c) algal biomass film (g/m2)", while the y-axis is designated as 
“Residual.” At the y-coordinate of zero, a horizontal line is present on 
the plot, appropriately named the “Zero Line.” The data represented by 
the purple triangles corresponds to the outputs of the ANN. The blue 
squares, on the other hand, depict the training data. The turquoise blue 
represents the test data, while the red circles symbolize the validation 
data. The residuals exhibit a dispersion pattern centered on the zero line, 
suggesting that the projected data lacks errors. The graph displays two 
labels indicating the maximum positive and negative residuals for three 
variables: a) NO3–N concentration, b) pH, and c) Algal biomass film. The 
maximum positive residuals for these variables are 0.0357, 0.1958, and 
0.685, respectively. Conversely, the maximum harmful residuals for 
these variables are − 0.0459, − 0.1807, and − 1.1408, respectively. The 
graphical representation illustrates a strong concurrence between the 
estimated data generated by the neural network and the experimental 
data. 

3.4. Comparing the outputs of RSM and ANN models 

In this part, a comparison has been made between the data derived 
by the RSM and ANN models and the actual data collected from Algal 
Film Biomass, pH and NO3–N. According to the results presented in 
Fig. 7-a, both models demonstrated high accuracy in predicting the 
experimental data for Algal Film Biomass. However, when the concen-
tration of CO2 increases, the neural network exhibited superior predic-
tive capabilities compared to the RSM. This suggests that the neural 
network underwent more effective training. In Fig. 7-b, a comparison 
was made between the NO3–N data, revealing that the ANN model had 
superior performance in this sector. The pH data of the proposed models 
are compared in Fig. 7-C. The presented figure demonstrates that, on the 
whole, the neural network model has exhibited superior predictive ca-
pabilities concerning the actual data, particularly in instances involving 
a concentration of 3 CO2 and data points characterized by lower pH 
levels. Consequently, the ANN model exhibited enhanced performance 
for both data series. 

Fig. 7. Real-data comparison of RSM and ANN models for a) Algal Film Biomass and b) NO3–N c) pH.  
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3.5. Optimization by NSGA-II 

Fig. 8 a and b illustrates the utilization of the NSGA-II algorithm in 
conjunction with the ANN model and the RSM model to optimize lab-
oratory data pertaining to NO3–N concentration and pH. The x-axis is 
labeled as “concentration of nitrate ions (g/L)," while the y-axis is 
labeled as “inverse of pH.” The plotted data points exhibit a curvilinear 
pattern, originating from the upper left quadrant of the graph and 
gradually descending towards the lower right quadrant. This optimiza-
tion aims to identify the optimal combination of NO3–N concentration 
and pH that will deliver the maximum quality or quantity of a given 
product or process. Based on the graphical representation, it can be 
observed that the optimal position is situated at the point of intersection 
between the curve and its minimum value. The geographical area in 
question exhibits the most alkaline pH level and the least amount of 
NO3–N concentration. 

3.6. Comparison of this work with another 

For this reason, efforts to meet the most accurate standards in quality 
and standardization will continue. One of the main problems is choosing 
the best algorithm for each process. Table 4 reviews recent work on 
modeling and optimizing the behavior of the algal membrane bioreactor 
process. Furthermore, Table 4 compares present work and other works 
in this field. As can be seen, the conformity of present study results with 
the results of recent studies is observed. However, the present study has 
examined different algorithms. One significant gap that must be noticed 
is trying different computational intelligence algorithms to find the best 
technique. In this regard, different algorithms have been examined in 
the present study. 

Fig. 8. Pareto front of optimization by a) ANN Model, b) RSM Model.  
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4. Conclusion and perspective 

Both the RSM and the ANN were applied in this study to anticipate 
the algal biomass film, NO3–N concentration, and pH. RSM stands for 
the RSM, and ANN is for the ANN. The models treated the CO2 content 
and the passage of time as independent variables. The equations of the 
RSM model are applied to predict the temporal dynamics of algal 
biomass film, NO3–N concentration, and pH while considering the in-
fluence of time and CO2 concentration. An ANN is utilized as a modeling 
tool for algal biomass film. Its R2 value is 9.98E-01, and its R-value is 
9.99E-01. 

Additionally, its MAE value is 8.56E-02, and its MSE value is 1.43E- 
01. The architecture of the network is described as having a 5-3 struc-
ture. As can be seen by its R2 value of 9.96E-01, the R-value of 9.98E-01, 
MAE value of 1.62E-03, and MSE value of 2.62E-02, the ANN model has 
a high level of accuracy when it comes to forecasting NO3–N concen-
tration and pH. This is evidenced by the fact that these values are all 
minimal. The conditions were found to be most favorable for producing 
an algal biomass film at a CO2 concentration of 2.884 mg/L and for some 
time equal to 6.589 days. At a CO2 concentration of 2.984 mg/L and 
6.787 days, the conditions were ideal for achieving the highest NO3–N 
concentration and pH levels. These conditions led to the optimal con-
ditions. The NSGA-II algorithm was used to optimize the identification 
of the ideal combination of NO3–N concentration and pH to obtain the 
maximum possible yield or quality of a particular product or process. 
The goal of this endeavor was to optimize the identification of the 
optimal combination of NO3–N concentration and pH. The NSGA-II al-
gorithm suggests that the best position is the point on the curve where it 
reaches its minimum value. This point corresponds to the place on the 
curve with the highest pH level and the lowest concentration of NO3–N. 
As the application of artificial intelligence in optimizing and modeling 
chemical processes becomes more recent, less effort and time spent on 
experimentation can be expected. However, it should not be forgotten 
that different algorithms have differences. 
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