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Abstract

The MEPC 80 session has revised the International Maritime Organization (IMO) greenhouse gas strategy, setting more ambitious decarboniza-
tion goals. Carbon capture and storage (CCS) technologies have shown promise in reducing maritime carbon emissions, although their high-
energy requirements have often been neglected in previous research. This study introduces a novel system integrating a natural gas engine,
CCS, an Organic Rankine Cycle (ORC), and a power turbine (PT). An exhaust gas bypass strategy is used to enhance engine performance at
low and medium loads, channeling exhaust to the PT for power generation. The engine’s waste heat is fully utilized for CCS via cold, heat,
and power. The study compares various absorbents in the CCS system, including monoethanolamine and piperazine solutions, which show
different carbon capture efficiencies. Additionally, CO2 storage conditions are analyzed and compared. The proposed system shows potential
for significantly reducing the Energy Efficiency Design Index for general cargo ships. The study addresses the high-energy demands of CCS by
utilizing the engine’s waste heat, transforming a potential drawback into a beneficial resource. By integrating the ORC and PT, the system not
only captures carbon but also improves overall energy efficiency, presenting a promising solution for maritime decarbonization. The analysis of
CO2 storage conditions further enhances the understanding of effective carbon management. This innovative system demonstrates that with
strategic integration and optimization, significant progress can be made toward achieving the stricter decarbonization targets set by the IMO
while also enhancing the energy efficiency of maritime operations.

Keywords: greenhouse gas reduction; recovery of waste heat; marine engine; 4E analyses; Energy Efficiency Design Index

1 Introduction

According to the International Maritime Organization (IMO)
[1], maritime transport, which facilitates almost 89% of
global trade [2], is responsible for 2.88% of the total carbon
dioxide output worldwide. As a result, the International
Marine Organization has implemented several strategies to
decrease emissions in the marine sector. These include the
implementation of the Energy Efficacy Development Index
(EEDI), the Energy Efficacy Existing Ship Indicator (EEXI),
and the Carbon Intensity Index [3]. More precisely, the

implementation of the EEXI began on 1 January 2023, as
stated by Qu and colleagues [4]. Additionally, Stage III of
the EEDI has been launched, as mentioned by Gutierrez-
Romero and colleagues [5]. Moreover, the MEPC 80 session
sets more ambitious objectives, including two major targets
[6]: a minimum reduction of 20%, with a goal of 30%, in
overall yearly greenhouse gas (GHG) emissions from global
shipping by 2030, compared to the levels in 2008, and a
minimum reduction of 70%, with a goal of 80%, by 2040,
also relative to 2008 [7].
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Today, the use of renewable energy has become popular
in most industrial processes and sectors such as building,
agriculture, transportation, etc. [8, 9]. Biomass, solar, geother-
mal, and wind energies are among the most well known of
these energy sources [10, 11]. The maritime sector is mak-
ing significant strides toward eliminating carbon emissions
entirely [12, 13]. Various methods to reduce carbon emissions
have been suggested, including the use of substitute energy
sources [14, 15], as well as the utilization of sustainable
and eco-friendly energy sources, for instance, solar energy
[16, 17] and wind energy [18], and the implementation of
electrochemical storage systems [19]. Among these options,
substitute energy sources have the greatest potential for imme-
diate usage in marine environment applications due to their
cost-effectiveness and feasibility [20, 21]. It is expected that
natural gas will have a significant impact on the upcoming
phase of the carbon-neutral plan due to its cost-effectiveness
and widespread accessibility [22]. Nevertheless, it is important
to acknowledge that while ammonia engines do not release
CO2, they can nevertheless have a substantial influence on
the greenhouse effect as a result of N2O and unburned NH3
emissions [23]. Maritime natural gas engines, being more
advanced, are projected to become the dominant force in the
low-carbon technology market in the upcoming years [24].

Although gas-powered engines represent progress in reduc-
ing carbon emissions, they still generate carbon dioxide, which
poses a challenge to achieving near-zero emissions. In order to
reduce the carbon footprint of maritime vessels, it is essential
to utilize technologies such as CCS and waste heat recov-
ery (WHR) [25, 26]. These technologies have been identi-
fied as significant in mitigating the environmental impact,
as supported by studies conducted by Jiang and colleagues
[27], Park and colleagues [28], Zheng and colleagues [29],
Baldasso and colleagues [30], Hoang [31], and Liu and col-
leagues [18]. In a recent study, Chu et al. [32] emphasized
the crucial significance of sophisticated CCS technology in
attaining near-zero emissions. They argued that relying just
on renewable energy is insufficient to achieve net-zero emis-
sions. Although the present expenses associated with CCS
technology expenditures are substantial, they are anticipated
to yield significant economic advantages in the long run. Three
primary technological methods for CCS in maritime environ-
ments include postcombustion, precombustion, and oxyfuel
technologies [33]. In their study, Yao and colleagues [34]
described a sophisticated oxy-combustion CCS system that is
specifically tailored for marine engines. This system effectively
utilizes waste heat from CCS to facilitate the evaporation of
liquid natural gas (LNG). Their research revealed that the
system could attain a carbon capture purity of 97.09%, an
exergy efficiency of 51.78%, an output power of 318.36 kW,
and an annual net profit of US$485165. Furthermore, post-
combustion CCS is especially well suited for maritime natural
gas engines because of the straightforward integration of
the engine with the CCS system. Postcombustion processes
generally exhibit higher carbon capture efficiency relative to
precombustion and oxyfuel methods [35].

Feenstra and colleagues [36] investigated the application
of a CCS system on LNG-powered ships. They discovered
that the lowest possible expense for capturing and converting
carbon dioxide into liquid form might be as little as 98 e per
metric ton of CO2. Zhou et al. evaluated the efficacy of CCS
systems with varying CO2 storage capacities, demonstrating
that greater storage capacity resulted in reduced costs for

liquefaction. Ros et al. [37] performed an economic evaluation
of solvent-based CO2 capture for marine uses, demonstrat-
ing that onboard CCS systems have the ability to capture
CO2 at a price of 118 e/ton CO2, achieving an efficiency
rate of 72.6%. Long and colleagues [38] developed a CCS
system specifically designed for marine diesel engines. The
system achieved an impressive carbon removal efficiency of
94.7%, which is equivalent to 1349 kg/h. Liu et al. [39]
developed a controllable and rapid combustion concept for
high power-density diesel engines. Stec and colleagues [40]
devised a postcombustion CCS system specifically designed
for maritime applications, which also effectively eliminates
sulfur dioxide (SO2). They emphasized that these systems have
the ability to decrease CO2 emissions with minimal decrease
in energy efficiency in extremely cold temperatures. They
can achieve carbon recovery rates ranging from 31.4% to
56.5% while still fulfilling the EEDI for the reference ship
by 2025. Several research has concentrated on implementing
CCS systems in maritime settings. Postcombustion procedures
encompass techniques such as physical adsorption [41], chem-
ical absorption [42], and membrane technology [43].

Chemical absorption has demonstrated significant potential
because of its reliable performance and capacity to man-
age large amounts of gas [44–47]. In their study, Oh and
colleagues [48] examined the effects of different sizes of
monoethanolamine (MEA)-based aboard carbon containment
systems regarding exhaust gas parameters. They determined
system scale had little influence on the reduction of CO2, indi-
cating that smaller systems could potentially lead to cost sav-
ings. In their study, Manimaran et al. [49] investigated the uti-
lization of phase change solvents to capture carbon from diesel
engine exhaust. Specifically, they examined the effectiveness
of two amino acids, l-alanine and l-arginine. These findings
indicate that l-alanine led to a reduction in CO2 emissions
by 13.04%, while l-arginine achieved a reduction of 21.73%.
In their study, Luo and Wang [50] devised a solvent-based
CCS system specifically designed for cargo ships. This system
successfully achieved a remarkable 73% decrease in carbon
emissions from two 4-stroke engines, which collectively gen-
erated 17 MW of power. The cost of implementing this system
amounted to 77.5 e/ton of CO2. In addition, they imple-
mented an improved system that includes an additional power
turbine (PT), resulting in a carbon recovery rate of 90%, albeit
at a higher expense. Multiple solvents are appropriate for
absorption-based CCS devices. Nevertheless, postcombustion
CCS systems require substantial quantities of thermal energy
and power. Zhao and colleagues [51] performed a thermody-
namic assessment of the absorption-based carbon capture pro-
cess, illustrating a technique for transferring thermal energy
into electricity to enable chemical reactions. Kim et al. [52]
devised and assessed a portable carbon capture device for
commercial vehicles with the aim of reducing GHG emis-
sions. García-Mariaca and colleagues [53] suggested using an
Organic Rankine Cycle (ORC) as a means to reduce the energy
expenses linked to mobile engine carbon capture, resulting
in a capture rate of 90%. In addition, the ORC was able to
decrease the energy penalty on the engine’s power by a range
of 3.9% to 13.9% as a result of the CCS technology. Voice
and Hamad [54] developed a CCS system tailored for inter-
nal combustion engines. This system effectively utilizes the
engine’s waste heat to maintain steady operation of the CCS
system. These studies suggest that postcombustion, chemical
capture, and liquefied containment CCS systems are highly
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Figure 1. The illustration of the proposed energy system.

likely to be beneficial for maritime natural gas engines. Nev-
ertheless, they also emphasize the significant need for heat,
cold, and electricity necessary for CCS operations. Numerous
researches have investigated the utilization of waste heat to
fulfill the energy requirements of CCS systems. However, there
is still a dearth of thorough and all-encompassing studies
on the integration of engines, WHR systems [55], and CCS
systems. Furthermore, in order to effectively absorb carbon
dioxide in CCS systems, it is necessary to keep the temperature
below 40◦C. However, this need results in the inefficient use of
low-temperature heat. No reports have been made regarding
the utilization of waste heat at low temperatures. Moreover,
earlier studies on postcombustion CCS systems have failed
to consider the requirement of cold energy for compressing
carbon dioxide. Ultimately, there is a dearth of comprehensive
solutions for aligning CCS energy requirements with the
provision of heat, cold, and power derived from waste heat
from engines and cold energy from LNG. This article suggests
the integration of maritime natural gas engines with CCS
systems, along with the inclusion of WHR technology in both
the engine and CCS system, as a solution to tackle these
difficulties. Initially, it is recommended to redirect the exhaust
gas away from the turbine under specific load levels, enabling
the utilization of the residual thermal and pressure power

by a PT. This method aids in optimizing the performance of
the engine under varying load conditions. Furthermore, the
excess thermal energy preceding the absorption tower in the
CCS configuration is harnessed through the utilization of an
ORC. Furthermore, the thermal energy generated during the
carbon dioxide liquefaction process is used to convert LNG
from liquid to gas and to heat it beforehand. Conversely,
the cryogenic energy obtained from the LNG is utilized to
liquefy carbon dioxide. A comparative assessment is carried
out to evaluate the effectiveness of MEA and piperazine (PZ)
as absorbent agents. Furthermore, a comparison investigation
of two different CO2 storage scenarios is also conducted.
Moreover, the waste thermal energy generated by the engine’s
exhaust gas is utilized to aid in the process of desorption.
An extensive analysis is performed to assess the effects of the
suggested integration approach on energy efficiency, economic
feasibility, and environmental advantages. This analysis covers
four key aspects: energy, exergy, economic, and environmen-
tal. Parameter analysis is then conducted to determine the
most favorable arrangement of the integrated system. Further-
more, a technical and economic evaluation of this integrated
system is conducted. Ultimately, the environmental impacts of
the integrated system are examined, specifically in relation to
its implementation on a general cargo vessel. This study seeks
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Table 1. Key specifications of the 8M23G natural gas engine

Parameter Value Parameter Value

Numbers of cylinder 8 Rating power 1.6 MW
Bore 0.23 m Compression ratio 13
Rating speed 1000 rpm Average pressure 18.2 bar
Stroke 0.32 m

to provide a robust approach for integrating maritime natural
gas engines, CCS systems, and WHR systems.

2 System description

Fig. 1 illustrates the system being analyzed. This study focuses
on a marine engine that runs on natural gas and operates
at a medium speed. The precise details of the engine may
be found in Table 1. At first, a fraction of the gas that is
released from the cylinder (known as Stream 22) is redirected
in order to maintain a consistent and reliable performance
of the turbocharger. The PT captures the remaining thermal
and pressure energies from the redirected gas. In addition, the
exhaust gas that comes out of the turbocharger (Stream 1) is
processed by chilling it using a concentrated solution (Stream
6). Extracting CO2 from exhaust gas in a transmitter at a
reduced temperature is of utmost importance. Consequently,
the exhaust gas that has been cooled (Stream 2) experiences
more cooling, resulting in the generation of some excess
thermal energy. The waste thermal energy is subsequently
harnessed by a straightforward ORC. Following a proper cool
down process, the exhaust gas (Stream 3) is introduced into
the absorber, resulting in the release of purified exhaust gas
(Stream 4). Inside the transmitter, carbon dioxide (CO2) from
the exhaust gas interacts with either MEA or PZ solution,
resulting in the formation of a solution enriched with CO2
(Stream 5) that exits the absorber. The enriched solution is
first heated by the cooler, CO2-depleted solution (Stream 8),
after that with the exhaust gas (Stream 1). Heated solution
containing high levels of CO2 (Stream 7) is subsequently intro-
duced into the desorber, where the CO2 is extracted from the
solution and released. The solution with reduced CO2 levels
(Stream 8) is chilled by the incoming solution with higher CO2
levels (Stream 5) in a heat exchanger specifically constructed
for solutions with different CO2 concentrations. This cooling
process occurs before the solution re-enters the absorber to
restart the cycle of absorbing CO2. The CO2 emitted from the
desorber undergoes compression, cooling through seawater,
dehydration, and ultimately complete liquefaction through
LNG, before being stored in a CO2 tank. The desorption
process is fuelled by the heat generated by the exhaust gas.

3 Approaches

3.1 Engine evaluation

An engine evaluation was performed under atmospheric con-
ditions with a temperature of 31.9◦C and a humidity level of
54%. During this test, exhaust gas temperatures were mea-
sured upstream and downstream of the turbine, alongside the
turbocharger speed, turbocharging pressure, and fuel usage.

3.2 Carbon capture system simulation

The study establishes a system-level carbon capture system
model using Aspen Plus. The primary parts, the absorption

and desorption units, are modeled using the RadFarc module,
creating submodels based on rate analysis. The HeatX module
simulates the thermal energy exchanger, and the heater mod-
ule is employed for the condenser [56]. The chemical reactions
between MEA and CO2 are described below [57]:

2H2O � H3O+ + OH− (1)

HCO−
3 + H2O ←−−−−−−→ CO2−

3 + H3O+ (2)

HCO−
3 + H2O ←−−−−−−→ CO2−

3 + H3O+ (3)

CO2 + OH− → HCO2−
3 (4)

HCO2−
3 → CO2 + OH− (5)

MEA + CO2 + H2O → MEACOO− + H3O+ (6)

MEACOO− + H3O+ → MEA + CO2 + H2O (7)

The reaction rate constant of CO2 absorption/desorption
process has been simulated as given in the following equation:

r = kTn exp
(

− E
RT

) n∏
i=1

Cai
i (8)

In the given formula, k is the pre-exponential coefficient, T
indicates the temperature, E represents the activation energy,
R stands as the universal gas constant, and Ci and ai corre-
spond the quantity and stoichiometric proportion of compo-
nent i, respectively. The specifics of these responds are outlined
in Table 2. Interactions between PZ and CO2 are described
below [58, 59]:

PZ + CO2 � H+PZCOO− (9)

H+PZCOO− � PZCOO− + H+ (10)

PZCOO− + CO2 ←−−−−−−→ O−OCPZCOO− (11)

PZ + H+ � PZH+ (12)

The carbon capture model was verified using data from Ref.
[60] to validate the precision of the model described in this
paper. The model was tested under two different operational
conditions, resulting in comparative discrepancies of 3.17%
and 2.29%. These discrepancies primarily originate from not
accounting for heat losses in the heat exchangers. There were
also slight discrepancies in flue gas temperature and pressure
across the two datasets. However, the model established in
this study meets the set error criteria and provides a reliable
analysis of the carbon capture system operations. The effi-
ciency of the carbon capture system is evaluated using the
reboiler load per unit mass of CO2, which is determined as
follows:

qre = Qre

mabs
co2

(13)
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Table 2. Variables of reaction period

Parameter Reaction 4 Reaction 5 Reaction 6 Reaction 7

Activation energy 55.4 kJ/mol 123.1 kJ/mol 41.2 kJ/mol 65.5 kJ/mol
Pre-exponential factor 4.32E+13 2.38E+17 9.77E+10 3.23E+19

Table 3. Exergy loss formulations for each element of the proposed system

Component Destructed exergy Component Destructed exergy

Turbine E10−E11−WT, ORC Intercoller 1 Q1 + E15a − E15b
Condenser E11 − Qc − E12 Intercoller 2 Q2 + E15c − E16
Pump E12−E13+WP, ORC Compressor—first step W1 − E15 − E15a
Desorber E7 − E15 − E8 Compressor—second step W2 + E15b − E15c
Liquefier E18+E20−E19−E21 Evaporator E2 + E14 − E3 − E10
Absorber E3 + E9 − E5 − E4 #HE-Rich-poor E5 + E8 − E6 − E9

3.3 Simulation of ORC unit

A standard ORC is utilized at low-grade waste thermal energy
reclamation, depicted in Fig. 1 (Stream 10-11-12-13-14-10).
The evaluation of the ORC adheres to the principles of the
first law of thermodynamics [61–63]. The thermal balance in
the evaporator is characterized below:

WCO2 = mco2

k
k − 1

RgTin

(
1 − π

x−1
x

)
(14)

The net outlet energy of the ORC is determined below:

Wnet,ORC = WE,ORC − WP,ORC (15)

The heat released by the condenser in the organic working
fluid is calculated as follows:

Qc = mw
(
h12 − h11

)
(16)

The efficiency of the system is subsequently calculated as
follows:

ηe = Wnet,ORC

Qh
(17)

3.4 Exergy evaluation

This paper carries out an exergy analysis of the combined sys-
tem. The techniques for examining exergy losses are outlined
in Table 3. The reference environmental conditions are set at
26◦C and under a pressure of 1 bar. Within this framework,
WCO2-1 signifies the power output of the first CO2 com-
pressor, WCO2-2 represents the energy output of the second
CO2 compressor, Qq1 is the chilling thermal energy of inter-
cooler 1, Qq2 denotes the chilling thermal energy of inter-
cooler 2, and Ei expresses the exergy at stream i, computed
below:

Ei = mi
(
hi − hi,0 − T0

(
si − si,0

))
(18)

In this case, hi and si denote the enthalpy and entropy
at stream, respectively. Conversely, hi,0 and si,0 indicate the
enthalpy and entropy of the constituent at stream i under
standard environmental conditions. T0 represents the ambient
temperature.

3.5 Technical–economic analysis

This study performs a techno-economic analysis. The method-
ology for calculating the capital expenditure (CAPEX) is
explained below [36]:

CAPEX = FCI
0.8

× i(i + 1)n

(i + 1)n − 1
, (FCI = TDPC+TIPC) (19)

Table 3 details the methods used for analyzing exergy loss.
The reference conditions, or dead state, are set at 26◦C and
under a pressure of 1 bar. In this context, WCO2-1 and
WCO2-2 are the power outputs of the first and second CO2
compressors, respectively. Qq1 and Qq2 are the cooling heat
from intercooler 1 and intercooler 2, respectively. Ei is the
exergy at stream i, computed as follows:

This document undertakes a techno-economic evaluation.
The capital expenditure (CAPEX) is calculated using the
approach described below [36]:

CAPEXa = CAPEX
n

, (OPEX = FOPEX + VOPEX) (20)

Here, ‘i’ represents the interest rate and ‘n’ the service life.
FCI stands for the fixed capital investment, TDPC denotes the
total direct plant cost, TIPC represents the total indirect plant
cost, and TEC stands for the total equipment cost. TEC can
be estimated using Aspen Plus software. The annual capital
expenditure is subsequently calculated as follows:

TDPC = 2.10 × TEC, (TIPC = 0.14 × TDPC) (21)

Here, mfuel represents the fuel consumption, W denotes the
power input of the system, t refers to the operational time
annually, and Cfuel is the cost of fuel. The costs associated with
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Table 4. The findings related to engine exiting gas

Parameter
Load

50% 70% 90% 100% 110%

Mass flow rate of exhaust gas 4590.43 kg/h 6792.98 kg/h 8108.1 kg/h 9073.94 kg/h 10203.72kg/h
Exhaust gas temperature after turbocharger 436.8◦C 441.5◦C 424.4◦C 411.8◦C 411.5◦C
Exhaust gas temperature before
turbocharger

515.4◦C 554.6◦C 562.72◦C 571.4◦C 585.3◦C

CO2 mole fraction 3.62% 3.63% 3.62% 3.62% 3.61%
CO2 mass flow rate 261.36 kg/h 386.1 kg/h 461.34 kg/h 515.8 kg/h 578.16 kg/h

capturing carbon dioxide are calculated as follows:

CCC = CAPEXa + FOPEXa + VOPEXa

mCO2−a

(22)

where mCO2-a indicates the annual amount of carbon dioxide
captured.

3.6 EEDI calculation approach

Lee and colleagues [64] devised a method for determining
the EEDI for ships equipped with CCS systems, detailed as
follows:

EEDI=

(∏j=1
n fi

)(∑i=1
nME PME(i)×CPME(i)×SFCME(i)×fco2

)
+ (PAE × CFAE × SFCAE) + PTI + EFF

f × Vref × Capacity
(23)

In this framework, PME(i) denotes the power output of the
main engine, CFME(i) indicates the carbon factor for natural
gas, and SFCME(i) represents the specific fuel consumption
of the main engine. PAE refers to the power output of the
auxiliary marine generator set, CFAE is the carbon factor for
the fuel used by the generator set, and SFCAE defines the
specific fuel consumption of the marine generator set. Vref is
the vessel’s design speed, capacity is the design deadweight,
mcapture quantifies the carbon captured, and mexhaust specifies
the mass flow rate of carbon dioxide in the exhaust gases.
Additionally, the desired EEDI can be computed below:

EEDIrequired = (1 − X%) × a × DWT−c (24)

Here, X represents the decrement factor, whereas a and c
denote coefficients meanwhile DWT stands for the vessel’s
deadweight.

4 Findings

4.1 Results of engine testing

The Marine 8M23G gas-powered engines underwent testing
within the specified boundary conditions for an integrated
CCS-ORC-PT system. Table 4 demonstrates that the temper-
atures of the exhaust gas after the turbocharger were higher
than 410◦C, suggesting the existence of waste heat of excellent
quality that is appropriate for generating electricity using the
ORC. Prior to entering the turbocharger, temperatures above
520◦C were measured, highlighting substantial opportunities
for power generation through power turbine (PT).

4.2 Analysis of parameters
4.2.1 Carbon capture unit
Fig. 2 illustrates the impact of different mass concentrations
of MEA and PZ absorbents on the system’s performance.
The mass flow rates of these solutions decreased from 6.66
and 6.12 to 4.35 and 4.46 kg/s, respectively, when the con-
centration was increased from 20% to 40%. The drop is
related to the increased efficacy of the absorbents at greater
concentrations, resulting in a reduction in the amount needed.
However, greater amounts of MEA are linked to a height-
ened risk of corrosive harm. The boiling points of MEA
and PZ solutions decreased from 121◦C to 122◦C and from
123◦C to 120◦C, respectively, as the levels increased. This
discovery indicates that PZ solutions have a more consis-
tent temperature response when the concentration is altered,
unlike MEA solutions. Raising the temperature can lead to
more intense chemical reactions, highlighting the need to
control the concentration of absorbent mass to prevent the
breakdown of MEA and PZ at high temperatures. Moreover,
the energy requirement of the reboiler shows a fluctuating
trend in response to changes in the mass concentration of the
absorbent. This behavior is influenced by various factors such
as the higher temperature required for reboiling and the lower
rate at which the absorbents flow. These factors contribute to
the observed pattern. Fig. 2 illustrates that the ideal reboiler
load is attained when the absorbent mass concentration is
30%, which is considered the benchmark.

In addition, Fig. 3 investigates the influence of CO2 content
in the impoverished solution on the operation of the CCS
system. The reversible nature of the process of absorbing and
desorbing CO2 results in the presence of residual CO2 in the
solution with low concentration. When the CO2 content in
the inadequate solution increases from 0.16 to 0.29, the mass
flow rate of the absorbent increases from 2.48 to 4.77 kg/s,
and from 2.82 to 4.38 kg/s, respectively. This increase is a
result of a decrease in the concentration of MEA or PZ. Fur-
thermore, a rise in CO2 concentration leads to a drop in the
reboiler load per unit of CO2 for the PZ solution. However, for
the MEA solution, it initially falls and subsequently increases.
Elevated levels of carbon dioxide (CO2) decrease the amount
of water present, resulting in a drop in the amount of heat
required for evaporation and, thus, a reduction in the amount
of CO2 needed to operate the reboiler.

Raising the desorption pressure from 0.9 to 1.9 bar
improves the rate at which CO2 is released, leading to a
drop in the amount of cooling water required, a reduction
in chilling thermal power, and a rise in temperature from
around 100◦C to 120◦C. Modulating the desorbing pressure
is essential for maintaining an optimal temperature range.
Moreover, raising the pressure at which desorption occurs
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Figure 2. The impact of the absorption mass on (a) mass flow of the absorbent, (b) reboiler temperature, (c) loading of boiler.

reduces the amount of energy required per unit of CO2 in the
reboiler. Specifically, for the MEA solution, the energy load
decreases from 2443 to 1688 kW/tCO2, and for the PZ solu-
tion, it decreases from 2588 to 1916 kW/tCO2. An increase in
desorbing pressures causes a shift in the equilibrium toward
producing more CO2, reducing the amount of heat required
for the desorption reaction. Nevertheless, higher desorbing
pressures could elevate the energy demands for compressing
and liquefying CO2.

4.2.2 ORC unit
The primary parameters that significantly impact the effi-
ciency of the ORC system are the pressures involved in the
evaporation and condensation processes. The selection of
organic working fluids is particularly critical, as they exhibit
different evaporation temperatures at the same evaporating
pressure. This study does a comprehensive examination of
the evaporating and condensing temperatures in order to
improve the heat integration between the exhaust gas and the
ORC system. Fig. 4 illustrates the impact of the evaporation
temperature on the performance of the ORC. An increase
in the evaporation temperature often leads to a decrease in
the required mass flow rate of the organic working fluid.
However, the extent of this reduction varies depending on
the specific fluids being used. Moreover, a higher evaporation
temperature initially results in an elevation and, subsequently,
a decline in power production, with distinct peak values for

each fluid. These fluctuations are probably associated with
the energy needs of the pump. Higher evaporating tempera-
tures result in increased evaporating pressures, which can gen-
erate a substantial rise in the enthalpy change for the pump,
exceeding the changes for the expander. Furthermore, increas-
ing the temperature at which evaporation occurs continuously
enhances thermal efficiency. As the temperature at which the
liquid turns into vapor increases, the amount of heat required
for the ORC decreases. Moreover, the power production and
efficiency of the system are significantly influenced by the
condensing temperature, as illustrated in Fig. 4. An increase
in condensing temperature typically leads to decreased power
output and efficiency. The decrease is attributed to the rise
in the pump’s power demand, which surpasses the power
increase caused by the expander. Due to the constant thermal
input in the ORC, the overall efficiency also drops.

4.3 Heat-electric-cold demand and supply
matching

The PT is employed to absorb waste heat from diverted
exhaust gases with high temperatures and pressures. Fig. 5
demonstrates that the power generation abilities of both the
PT and the optimized ORC system vary under different oper-
ational situations. Significantly, when the engine’s workload
surpasses 50%, the outlet energy of the PT system varies
from 8.86 to 69.12 kW for workloads ranging from 55%
to 115%. Meanwhile, the net outlet energy of the ORC
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Figure 3. The impact of carbon dioxide in low solution on (a) absorbent mass flow and (b) the loading weight of reboiler.

system fluctuates between 15.05 and 33.46 kW when the
engine loads increase from 50% to 110%. The main reason
for these modifications is the higher temperatures of the
exhaust gases both before and after the turbocharger, as well
as the increased pressure of the exhaust gases before the
turbocharger. These improvements greatly improve the energy
outlet of the PT system relative to the ORC system. Moreover,
the energy demands of the CCS system are effectively fulfilled
by the collective power generated by both the PT and ORC
systems. This integration not only enhances efficient energy
consumption but also facilitates the necessary compression
of CO2 inside the CCS framework. Different quantities of
electrical power are required for varying CO2 storage pres-
sures, as illustrated in Fig. 6. The electricity generated by the
ORC and PT systems greatly exceeds the requirements for

CO2 compression in different storage situations, successfully
supplying power for CO2 compression activities. Additionally,
the surplus electricity has the potential to replace some of the
power generated by naval generators. Moreover, the process of
converting CO2 into a liquid state is made possible by utilizing
the low-temperature energy obtained from LNG.

Fig. 7 illustrates the amount of cold energy required from
LNG for CO2 liquefaction, as well as the latent heat of LNG
evaporation. The LNG cold energy effectively supports CO2
liquefaction processes, regardless of storage circumstances.

4.4 Exergy evaluation findings

A comprehensive exergy study has been conducted on the pro-
posed system, representing the distribution of exergy through-
out the CCS system. The desorber experiences the highest level
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Figure 4. The impact of carbon dioxide in low solution on (a) absorbent mass flow and (b) the loading weight of reboiler.

of exergy destruction, mostly due to the combined effects of
exergy losses from chemical reactions and high temperatures.
The solution exergy has a notably high flow, indicating a

substantial amount of chemical exergy. Following desorption,
the exergy level of the solution significantly decreases com-
pared to its initial state before absorption, primarily due to
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Figure 5. The impact of various loads on the power output.

Figure 6. The outlet of power generation units in the proposed system and the required power for composing the CO2 in various storage circumstances.

losses in the desorber and the requirement to replenish the
solution before absorption. This is a major factor contributing

to the significant exergy loss reported in the desorber. The CCS
system achieves an exergy efficiency of 7.34%.
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Figure 7. Comparing the needed cold energy for the liquefaction of carbon dioxide on different load conditions.

Figure 8. Device prices for the storage of the carbon dioxide unit.

4.5 Results of the techno-economic assessment

This research presents a detailed analysis of the integrated
system, focusing on its technological and economic aspects.

Fig. 8 illustrates the expenses related to the CCS system, con-
sidering various carbon dioxide storage pressures and types of
solvents. The primary factors driving prices are compression
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Figure 9. Device prices for the power generation cycle.

Figure 10. The carbon capture process’s prices impacted by different conditions.

procedures, with costs being much greater at a storage pres-
sure of 23 bars compared to 12 bars. In addition, the use of
PZ as a solvent is more cost-effective compared to MEA. The
most inexpensive choice is the 12-bar pressure situation with
PZ. Fig. 9 illustrates the allocation of expenditures within the
ORC system, with the condenser being the most expensive
component and the pump incurring the lowest expenses. In
general, the ORC system has considerably lower expenses
compared to the CCS system. Fig. 10 provides further details
on the expenses associated with carbon dioxide capture. It

shows that the majority of the costs are attributed to cap-
ital expenditure (CAPEX), whereas operational expenditure
(OPEX) and fixed operational expenditure (FOPEX) are sig-
nificantly lower. The cost study for carbon dioxide capture
indicates that the expenses per ton of CO2 are $196.20
for a 12-bar MEA configuration, $124.03 for a 12-bar PZ
configuration, $214.01 for a 23-bar MEA configuration, and
$220.58 for a 23-bar PZ configuration. The cost variations
result from the varying combinations of storage pressure and
solvent choice.
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5 Detailed roadmap for future work

Future work should focus on enhancing both the financial
and energy efficiency of the CCS system to ensure its via-
bility for widespread maritime application. Key areas for
improvement include optimizing the integration of WHR
and CCS technologies in a modular fashion to maximize
energy savings and minimize costs. Advanced monitoring and
control systems should be developed to reduce methane slip,
which is crucial for achieving near-zero emissions in maritime
operations. Additionally, further research is needed to explore
alternative absorbents and their long-term effects on system
performance and maintenance. Economic evaluations should
consider a wider range of scenarios, including fluctuating
fuel prices, varying carbon tax regimes, and different opera-
tional conditions, to provide a comprehensive understanding
of the financial implications. Collaboration with industry
stakeholders will be essential to address practical deployment
challenges and to ensure that the proposed system meets regu-
latory requirements and operational constraints. By focusing
on these areas, future studies can contribute significantly to
advancing the effectiveness and adoption of CCS technologies
in the maritime sector, thereby supporting global decarboniza-
tion efforts.

6 Summary and prospects

This paper presents a combined system that includes a CCS
system, an (ORC) system, and an energy turret. The purpose
of this system is to reach the demanding carbon footprint drop
goals established by the updated IMO GHG strategy. The
initial research involves conducting engine tests and analyzing
the combined system parameters. The main objective is to
compare the efficiency of PZ and MEA solvents in two
different CO2 storage circumstances. The system integration
carefully synchronizes the engine outputs with the heat, cold,
and electrical needs of the CCS system. When examined
from thermodynamic, techno-economic, and environmental
viewpoints, the system shows significant promise in decreas-
ing maritime emissions. The key findings indicate that the
performance of the CCS system is greatly affected by the con-
centration of the absorbent, the level of CO2 in the depleted
solution, and the pressure during desorption. The system’s
efficiency improves significantly as the concentration of CO2
in the depleted solution increases and when higher desorption
pressures is used. These factors substantially decrease the
amount of heat needed for reboiling. The CCS system has
determined the most efficient settings, which consist of a
30% concentration of absorbent, a depleted solution CO2
concentration of 0.4 mol CO2/mol PZ (or MEA), and a
desorption pressure of 2 bar. The sequestration rate obtained
using a PZ solution varies from 61.40% to 92.95% for
engine loads ranging from 110% to 50%. On the other
hand, MEA solutions produce capture rates between 84.81%
and 97.64%.

The ORC PT technology effectively fulfills the power needs
of the CCS system by utilizing waste heat from exhaust gases.
The energy outputs exceed 99 and 109 kW, respectively,
under particular conditions. Exergy evaluations identify the
main causes of exergy loss in the CCS system, particularly
due to solution losses, which lead to a low exergy efficacy
of 7.35%. Nevertheless, the exergy efficacy of the carbon
dioxide compression and liquefaction processes has the ability

to achieve a maximum of 54.86%, but the ORC system has a
strong exergy efficiency of 68.78%.

Cost evaluations indicate that the CCS system incurs sig-
nificant charges, mostly due to compression costs. On the
other hand, the ORC system experiences substantially reduced
expenses. The cost of capturing carbon dioxide depends on
the selection of solvent and storage pressure. It can range
from $196.20 per metric ton of CO2 for a 12-bar MEA
configuration to $220.58 per metric ton of CO2 for a 23-bar
PZ configuration. This cutting-edge device provides a possible
alternative for substantially mitigating carbon emissions from
maritime vessels. The research employs a 7100-DWT general
cargo ship to demonstrate that the suggested approach allows
it to attain EEDI values that comfortably meet the Phase III
criteria. The maximum decrease recorded in EEDI is 57.3%.

The present obstacles encompass the financial and energy
effectiveness of the CCS system. Subsequent studies should
prioritize enhancing these elements and more effectively incor-
porating WHR and CCS technologies modularly. Further-
more, it is crucial to tackle the issue of methane slip in order
for CCS devices to successfully attain nearly zero emissions
in maritime applications. Although it has some limits, this
research sets the stage for a thorough comprehension and
adoption of integrated technologies that could have a sub-
stantial impact on both market and policy frameworks in the
maritime sector.
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