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Abstract

Middle East has significant potential for independent solar and wind power generation due to its vast land area and dispersed settlements.
Enhancing the standard of living in remote areas and meeting the increasing demand for healthcare services worldwide are crucial objectives.
Finding the most reliable and affordable method of supplying energy and clean water to rural healthcare institutions is the main goal of the
research. The aim of this research is to evaluate the financial and environmental impacts of employing a hybrid energy system to supply power
to a clinic in Rijal Almaa, Saudi Arabia. Utilizing the HOMER software, the investigation determined that the most efficient hybrid configuration
includes 360 batteries, a 25 kW DG, a 2 kW wind turbine, 33.3 kW of solar panels, and an 18.4 kW converter. The NPC (Net Present Cost)
associated with this optimized system amounts to $109 307, while its COE is 0.103 $/kWh. It was found that this efficient system necessitates
an initial capital outlay of $72 281, coupled with an annual operational expense of $2361. The renewable fraction (RF) of 84.7%, excess electricity
generation of 8.81%, and fuel consumption of 4135 L/yr are notable features of the system. The system also exhibits the lowest annual CO2
emissions at 10825 kg/yr, indicating a positive environmental impact. The findings can be applied globally, particularly in hot, arid regions. The
analysis suggests that reducing the costs of hybrid solar panels, DG, wind turbine, and battery systems could significantly reduce overall costs,
making them a feasible solution for developing nations.

Keywords: renewable energy; HOMER software; techno-economic; analyzing sensitivity; optimization; hybrid energy system

1. Introduction

Remote areas lack electricity access due to high costs and
technical challenges. Installing local power production plants
could provide a cost-effective, reliable source of electricity in
these areas [1]. Off-grid renewable energy generation in rural
areas offers numerous benefits, including preventing fossil fuel
depletion [2], reducing emissions, eradicating poverty, creating
employment, and improving living standards [3, 4]. In the
global energy market, solar power is by far the most often
utilized renewable energy source [5, 6]. Saudi Arabia priori-
tizes sustainable electricity provision for public facilities like
health clinics, enhancing social infrastructure, ensuring energy
security, and transitioning towards cleaner energy sources [7].

As noted in [8], the risk of blackouts in the power grid
presents a significant concern, particularly for medical facil-
ities located in isolated rural locations that are difficult to
access from the grid. Global challenges include electricity
demand spikes, remote living standards, population growth,
and stable power supply [9, 10]. Hybrid energy systems can
address these, but also present challenges like wasted power
and overproduction, necessitating effective management. [11].

Many standalone systems have traditionally used conven-
tional electricity generation technologies like diesel generators
(DGs) [12]. DGs offer cost-effective, convenient power for
remote areas, but have drawbacks like frequent maintenance,
inefficiency, limited diesel access, and high transportation
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2196 Hai et al.

Table 1. Various optimization tools are accessible for sizing hybrid renewable energy systems

System Grid Software Location Reference

WT/PV/DG/FC/battery Off-Grid HOMER Iran [24]
WT/PV/DG/BG/battery Off-Grid HOMER Iran [25]
Fuel cell/PV/solar collector Stand-alone HOMER Australia [26]
PV/BG/Battery Off-grid HOMER India [27]
Fuel cell/pv/biomass gasifier Stand-alone HOMER India [28]
PV/DG/battery Stand-alone HOMER Bangladesh [29]
PV/WT/battery Stand-alone HOMER Iran [30]
WT/PV/battery Off-grid HOMER Iran [31]
WT/DG/PV/battery Off-grid HOMER Iran [32]
PV/DG/FC/Electrolyzer/HT/battery On-grid HOMER Saudi Arabia [33]
PV/FC/DG/HT/Electrolyzer/battery On-grid HOMER Malaysia [34]
WT/DG/PV/battery Stand-alone HOMER Syria [35]
PV/WT/battery Stand-alone HOMER China [36]
DG/PV/battery/flywheel Stand-alone HOMER Saudi Arabia [37]

costs [13, 14]. Integrating distributed generators with renew-
able energy sources like solar panels is a practical solu-
tion, particularly in sunny countries [15], enhancing system
dependability, reducing fossil fuel dependency, and addressing
environmental issues. [16, 17]. Energy storage systems (ESSs)
have proven to be beneficial in both balancing energy output
and consumption and controlling the variability of sources
of clean energy [18, 19]. Battery banks in ESSs store surplus
energy during high generation and discharge it during peak
consumption, combining DGs, solar panels, and battery banks
for cost-effective, emission-minimizing electricity solutions
[20]. Alongside batteries, other energy storage technologies
have advanced as well, such as hydrogen tanks, flywheels,
pumped storage, and supercapacitors [21]. Hydrogen storage
is notable for its storage duration, density, availability, and
environmental benefits [22].

Hybrid energy technologies are gaining popularity due to
cost-effectiveness and efficiency. HOMER software is used
for optimizing systems by evaluating power requirements
and sizing components efficiently [23]. Table 1 lists several
research projects that improve hybrid renewable sources using
artificial intelligence and computer software.

Researchers in Saudi Arabia are using the HOMER pro-
gram to optimize hybrid energy systems for a health clinic in
Rijal Almaa, addressing challenges like excess electricity and
grid breakeven distances.

The analysis of the literature shows how much potential
there is for autonomous solar and wind power generation
systems in the Kingdom of Saudi Arabia, a nation with a
sizable land area and numerous scattered towns and locations.
The primary objective of the research is to determine the
most dependable and economical means of providing energy
and clean water to rural healthcare facilities. Important goals
include raising the level of living in rural areas and satisfying
the growing global need for healthcare services. The research
endeavors to pinpoint a cost-effective strategy for advancing
rural health clinics by employing techniques for managing
excess electricity, conducting sensitivity analysis, and under-
taking multi-year analysis to address the aforementioned
challenges.

The article examines a hybrid power system in Rijal Almaa,
focusing on solar modules, a WT, DG, and battery banks
for a health clinic and water desalination. The HOMER
optimization tool is used to develop a long-term plan, with

sensitivity analyses for general application. The findings can
be applied globally, particularly in hot, arid regions.

2. Methodology

2.1. HOMER software

The investigation evaluates the technological, financial, and
environmental aspects of a hybrid solar modules/WT/bat-
tery/DG system using the HOMER software. Figure 1 shows
the optimization approach for hybrid systems created with
HOMER software, outlining the necessary steps to reach the
desired outcomes [38].

2.2. Technical analysis
2.2.1. Photovoltaic panels
Photovoltaic panels generate power when sunlight is abun-
dant, with a diesel generator compensating for reduced output
at night. The PV’s capacity is maximized using the HOMER
optimizer. HOMER calculates panel output using a DC bus
formula [39]:

PPV = YPVfPV

(
GT

GT,STC

) [
1 + αP

(
TC − TC,STC

)]
(1)

The photovoltaic array’s capacity is shown as PPV (kW).
The derating factor is f PV (%), the incident sun irradiation on
the photovoltaic array is represented by GT (W/m2), and the
incident irradiation in the typical test conditions is represented
by GT, STC (W/m2). The temperature coefficient of electricity
is denoted by αP (%/◦C), the photovoltaic cell temperature is
Tc (◦C), and the photovoltaic cell temperature under standard
circumstances is Tc,STC (◦C).

2.2.2. Diesel generator
Diesel generators are utilized as supplementary energy sources
to enhance the dependability of integrated power systems
[40]. DGs’ performance is determined by their fuel usage and
effectiveness, with HOMER incorporating a diesel generator’s
linear fuel curve with a y-intercept to calculate fuel consump-
tion features.

Fd = (
a.Td + b.Pd

)
(2)
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Figure 1. Hybrid system optimization flowchart.

In this context, Fd, Td, Pd, a, and b stand for the
fuel consumption rate (in liters per hour), DG capac-
ity, DG output, fuel intercept coefficient (in liters per
kilowatt-hour), and fuel slope (in liters per kilowatt-hour),
respectively.

2.2.3. Battery power
To optimize the battery’s strings, utilize the HOMER opti-
mizer. Use the following equation to determine the battery

system’s capacity [41]:

Cbat = AD.El

DOD.ηi.ηb
(3)

where the following variables represent the load demand
(kWh), depth of discharge (%), battery autonomy, battery
efficiency (%), and inverter efficiency (%), respectively: El,
DOD, AD, ηb, and ηi.
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Figure 2. Average daily solar irradiation distribution in Saudi Arabia.

Figure 3. The monthly averages of GHI (a), temperature (b), and wind speed (c) for Rijal Almaa village.

2.2.4. Wind turbine
A wind turbine converts wind energy into electricity [42, 43].
The WT’s capacity is maximized by means of the HOMER
optimizer. In order to account for variations in the wind speed
at various heights above the ground, HOMER calculates the

wind velocity at the hub altitude [44]:

Uhub = Uanem

ln
(

Zzub
Z0

)

ln
(

Zanem
Z0

) (4)
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Table 2. The breakdown of each container’s energy use

Health Clinic Container

Device Capacity (W) Quantity ×hours Energy total (kWh/d)

Lighting 15 6 × 10 0.90
Blood/Vaccine Refrigerator 70 1 × 18 1.26
Small Refrigerator 150 1 × 24 3.60
Lab Autoclave 1500 1 × 2 3.00
Oxygen Concentrator 270 1 × 2 0.54
Suction Apparatus 100 1 × 2 0.20
Desktop Computer 150 1 × 8 1.20
Mobile Charger 20 4 × 6 0.48
Radio Receiver 32 1 × 10 0.32
Air Conditioner 400 1 × 10 4.00
Other applicants 2000 1 2.00
Total energy consumption per container 17.50
Total energy consumption for 10 containers 175

Figure 4. Daily load profile.

Parameters such as Zanem (m), Z0 (m), Zhub (m), and Uanem
(m/s) denote the hub height and anemometer height of the
wind turbine, the surface roughness length, and the wind
speed at anemometer height.

2.2.5. Converter
To optimize the converter’s capacity, utilize the HOMER
optimizer. The HOMER converter, a crucial component in
hybrid energy systems, converts DC electricity into AC power
using an inverter and rectifier [45]. The efficiency (ηc) of the
converter is calculated by dividing the energy output (Pio) by
the input energy (Pii) [46]:

ηi = Pio

Pii
(5)

2.2.6. Renewable fraction
The HOMER program uses the following formula to deter-
mine the renewable fraction, or the percentage of energy pro-

duced from sustainable resources:

fren = 1 − Enonren + Hnonren

Eserved + Hserved
(6)

The nonrenewable electricity and thermal production,
the total electrical load served, the energy sold to the grid
(included in Eserved), the energy sold to the grid (included
in Eserved, which is zero in off-grid systems), and the total
thermal load served are represented, respectively, by Enonren,
Hnonren, Eserved, Egrid, sales, and Hserved [3].

2.3. Economic analysis
2.3.1. Real discount rate
Determining the yearly real discount rate is necessary when
converting single-time expenses to yearly expenses. In order
to determine this rate, HOMER utilizes the equation given
as [47]:

i = i′ − f
1 + f

(7)
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Figure 5. The setup of a hybrid battery, photovoltaic panels, WT, and DG
system.

where the nominal discount rate (i′), the actual discount rate
(i), and the predicted inflation rate (f ) are shown.

2.3.2. NPC
NPC, or the cost of installation and system operation over
a project’s lifespan, is crucial for determining optimiza-
tion priorities and HOMER responses, calculated using
equations [48]:

NPC = TAC
CRF (i, TP)

(8)

The formula to calculate the CRF is based on the values of
TAC, Tp,i, and CRF, representing the annualized total NPC,
project lifetime, real interest rate, and capital recovery factor,
respectively [49]:

CRF (i, n) = i(1 + i)n

(1 + i)n − 1
(9)

where n number of years.

2.3.3. Levelized cost of energy (LCOE)
The LCOE, or the mean cost of electricity produced ($/kWh)
for renewable energy sources, has decreased over the last 5
years, considering various factors. [50].

COE = Cann,tot

Eprim,AC + Eprim,DC
(10)

where Cann,tot, Eprim,AC, and Eprim,DC stand for the total
annualized cost of the primary load serviced by AC and DC
(kWh/year), respectively.

2.4. Emission

Carbon dioxide is the main output gas of energy processes [51,
52]. The following formula is used to calculate CO2 emissions
in a hybrid power system [53]:

MCO2 = 3.667
(
afHfCffc

)
(11)

Where MCO2, the amount of gasoline (L), its value for
heating (MJ/L), its carbon emission factor (ton carbon/TJ), its
yearly CO2 emissions (kg/year), and its fraction of oxidized
carbon are denoted, respectively.

3. System simulation

3.1. Climate statistics

Figure 2 displays the Solar Atlas of Saudi Arabia, indicating
that most parts of the country receive an average sun irradi-
ation between 4 and 7 kWh/m2/day, as demonstrated in the
sensitivity analysis [54].

3.2. Study area

The project analyzes solar radiation conditions in Saudi Ara-
bia, using Rijal Almaa as a sample village. Situated in the Assir
Region with geographical coordinates of 18.1245◦ N and
42.1625◦ E, it serves as a link between Yemen and the Levant,
with a fixed population of 2353 people and 600 families.

3.3. Wind, temperature, and solar energy data
resources

The village of Rijal Almaa is described in Table 1, and the
monthly averages of air temperature, wind patterns, and sun
irradiation are displayed in Fig. 3(a)–(c).

3.4. Loads

The electrical requirements of a health clinic, detailing com-
ponent types, quantities, operating hours, and energy usage
are presented in Table 2 [55]. The maximum power usage is
determined to be 17.5 kWh/day.

Health clinic containers accommodate 10 people [55], with
yearly load profile estimated using HOMER software. July
sees significant increase in electricity usage due to increased
air conditioning use (Fig. 4).

The clinic uses a desalination device to provide freshwater
for ten individuals daily, ensuring a minimum of 2.5 m3 of
water per day. About 4 kWh/m3 are used by the reverse
osmosis desalination system [56], adding 10 kWh to the daily
electrical demand. The peak load for the desalination system
and storage tank is 0.6 kW, which may be postponed due to
off-peak periods, despite the need for energy during daylight
hours. [25].

3.5. Equipment input

The hybrid power system comprises photovoltaic panels, a
wind turbine, a diesel generator, batteries, converters, an AC
bus, a DC bus, load demand, and additional components.
Figure 5 shows the arrangement of critical components in
renewable hybrid systems.

Tables 3 and 4 display component specifications and prices,
while HOMER Optimizer determines the number of PV pan-
els, converters, battery strings, and WT needed using search
space.

3.6. Financial statistics

The prices of individual components can be found in Table 4.
To analyze the project economically, a 25-year project lifetime,
a 6% interest rate, a 2.2% inflation rate [60], and a diesel cost
of 0.3067 $/L are assumed [61].
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Table 3. Technical details of a hybrid battery, PV panels, wind turbine, and DG system

Component

PV Model SunPower X21–335-BLK
Type Flat plate
Size 335 W
NOCT 43 ◦C
Temperature coefficient − 0.3%/◦C
Efficiency under typical test circumstances. 21%
Derating factor (DF) 88%
Lifetime 25 yr

Diesel generators Model Generic
Size 25 kW
Minimal ratio of load 25%
Fuel curve’s slope 0.237 L/h/kW
Coefficient of fuel intercept 0.0825 L/h
Lifetime 15 000 h

System converts Model System Converter
Size Auto sizing
Efficiency of inverters 95%
Efficiency of the rectifier 95%
Rectifier capacity 100%
Lifetime 15 yr

Battery Model Surrette 4 KS 25P
Type Kinetic Battery
Nominal capacity 7.55 kWh 1890 Ah
Round trip efficiency 80%
Batteries per string 12
Nominal voltage 4 V (48 V)
Max charge current 459 A
Minimum state of charge 40%
Throughput 10551.7 kWh
Lifetime 15 yr

Wind turbine Type AWS HC
Size 3.3 kW
Hub height 30 m
Lifetime 20 yr

Table 4. Costs of system components

Component Ref

System converts Nominal capacity 1 kW [57]
Investment costs 648 $/kW
Replacement expenses 598 $/kW
Operation and maintenance expenses 5.5 $/kW/yr
Lifetime 15 years

Wind turbine Nominal capacity 3.3 kW [30]
Investment costs 3240 $/kW
Replacement costs 2268 $/kW
Operation and maintenance expenses 65 $/kW/yr
Lifetime 20 years

Storage battery Nominal capacity 7.55 kWh [39]
Investment costs 538 $/kW
Replacement expenses 500 $/kW
Maintenance and operation costs 2 $/kW/yr
Lifetime 15 years

Flat plate PV Nominal capacity 1 kW [58]
Investment costs 1200
Replacement expenses 659.6 $/kW
Operation and maintenance expenses 0.5 $/kW/yr
Lifetime 25 years

Diesel generator Nominal capacity 25 kW [59]
Investment costs 1000 $/kW
Replacement costs 900 $/kW
Maintenance and operation costs 0.02 $/kW/hr
Lifetime 15 000 hr
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Table 5. Settings and limits within the software that are used to regulate
system operations

Items Value

Project lifetime 25 years
Load following Yes
Charge in cycles Yes
Apply the set point Yes
Set point state of charge 40%
Enabling multiple generators Yes
Multiple generators can operate in parallel Yes
Constraints minimal percentage of renewables 40%
Maximum yearly capacity shortage percentage 1%
Load in current time step 10%
Peak load per year 2%
Energy produced by solar panels 80%
Energy generated by wind turbines 50%

3.7. System control parameters and constraints

The module models for multiple years evolve over the project’s
duration, assuming 0.5% PV degradation and electric load
growth annually. Fixed O&M costs are anticipated to
remain steady [62]. Table 5 provides system controlling
settings for simulation run limitations, including battery
bank charging up to 40% capacity and predetermined charge
state.

4. Results and discussion

4.1. Optimization results

Table 6 shows the village’s optimization techniques. The most
cost-effective power systems also had the lowest NPC and
COE. The most efficient configuration was found to consist
of 33.3 kW of solar modules, 2 kW of wind turbine, 25 kW
of diesel generator, 360 batteries (30 strings), and 18.4 kW
of converter. When the LF method was used, this system
showed a low NPC ($109 307) and COE (0.103 $/kWh).
On the other hand, the photovoltaic panels and DG system
that employed the LF method were found to be economically
unviable because of their high NPC ($350 309) and COE
(0.331 $/kWh) that resulted from higher fuel, O&M, and
capital costs.

The proposed WT/PV/DG/battery hybrid system, which
includes PV panels, wind turbine, DG, and battery, is the
least expensive and emits the fewest carbon emissions. Its
initial investment cost is $72 281, with an annual running
cost of $2361, an efficiency ratio of 84.7%, and fuel usage
of 4135 L/yr.

4.2. Electrical outputs

Table 7 displays the power output of the ideal WT/PV/DG/
Battery system, with photovoltaic power generation account-
ing for 77.1% of the total annual energy generated. The
hybrid system uses diesel and wind power for energy, gener-
ating 12.7% and 10.2%, respectively, resulting in an 8.81%
surplus of electricity.

Figure 6 shows optimal WT/PV/DG/Battery system electric
generation peaks in October and March due to increased solar
radiation, while January experiences a decrease due to less sun
exposure.

4.3. Economic analysis

Figure 7 shows the costs of an ideal photovoltaic panels, wind
turbine, DG, and battery hybrid system, highlighting high
initial capital and operating costs.

The optimal photovoltaic panels, wind turbine, DG, and
battery hybrid system outperformed the standard system,
indicating a more economically feasible choice for cost recov-
ery and savings throughout the project’s 25-year lifespan
(Fig. 8(a) and (b)).

Figure 9 shows the proposed system, which combines solar
panels, wind turbines, DG, and batteries for maximum effi-
ciency, with a projected 8.7-year payback period.

4.4. Environmental performance analysis

Table 8 shows CO2 emissions ranking first, with PV pan-
els, WT, DG, and battery hybrid systems being the cleanest
options. However, because the PV/DG system emits the high-
est CO2 (42 538 kg/yr), it appears to be the most polluting.

4.5. Sensitivity analysis

Sensitivity analysis examines how input parameter changes or
uncertainty impact system behavior, requiring adjustments to
factors like diesel fuel price, PV power average, and nom-
inal discount rate. A comprehensive summary of the input
variables that significantly affect the system may be found in
Table 9.

Figure 10 shows COE and NPC values influenced by gaso-
line prices and discount rates, indicating the optimal battery
hybrid system with PV panels, wind turbine, and DG. The
net present value decreases and the COE increases with a 7%
nominal discount rate, indicating the necessity of selecting a
suitable rate for financial sustainability.

Figure 11 shows changes in NPC and COE values based
on irradiation and diesel prices. As irradiation increases, both
values drop, indicating that higher diesel prices directly affect
energy costs in hybrid systems.

Figure 12 demonstrates that an increase in annual mean
irradiation leads to a rise in renewable components and a
decrease in fuel use.

Figure 13 illustrates that a rise in scaled yearly average
irradiation is correlated with a decrease in CO2 emissions.
As Fig. 13 shows, there is a rise in COE and a fall in CO2
emissions with rising diesel costs.

Figure 14 shows that scaled annual average parameters
directly affect excess energy levels, with increased irradiation
resulting in higher excess electricity percentage and decreased
COE, and higher gasoline prices causing increased excess
electricity percentage.

4.6. Policy implications

The potential of a hybrid renewable energy system using PV
power in rural areas like Rijal Almaa Heritage Village in Saudi
Arabia is promising. With proper investment and government
support, these systems could provide a sustainable, clean solu-
tion for rural electrification. Future research should explore
control strategies and hybrid energy systems blending biomass
power generation.

5. Conclusion

The study assesses a hybrid power system for a rural (Rijal
Almaa village) health center using the HOMER optimization
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Table 6. The techno-economic attributes of the hybrid system

System PV
(kW)

WT
(kW)

DG
(kW)

Battery
(kWh)

Converter
(kW)

Dispatch COE
($/kWh)

NPC ($) RF (%) Fuel
(L/yr)

Excess
electricity (%)

CO2
(kg/yr)

WT/PV/DG/battery 33.31 2 25 24 18.38 LF 0.103 109 307 84.7 4135 8.81 10 825
DG/PV/battery 38.53 25 24 19.07 LF 0.105 111 561 82.9 4627 10.51 12 112
DG/WT/battery 9 25 12 9.41 CC 0.123 130 362 40.17 13 553 9.42 35 479
DG/WT/PV 13.14 24 25 6.20 LF 0.207 219 132 40.04 16 051 58.82 42 020
DG/WT 32 25 LF 0.218 231 246 40.08 15 557 60.98 40 727
DG/PV 197.6 25 25.31 LF 0.331 350 389 40.02 16 249 83.07 42 538

Table 7. Electricity generation and usage for optimal PV/WT/DG/battery setup

Component Production (kWh/yr) Percent

SunPower X21–335-BLK Generic 25 kW
Fixed Capacity Genset

62 577 10 336 77.1 12.7

AWS HC 3.3 kW Wind Turbine 8287 10.2
Total 81 200 100
Component Consumption (kWh/yr) Percent
AC primary load 63 875 94.6
DC primary load 0 0
Deferrable load 3649 5.4
Total 67 524 100
Quantity Value Units
Excess electricity 7151 kWh/yr
Unmet electric load 0 kWh/yr
Capacity shortage 1.03 kWh/yr

Figure 6. The average monthly output of power for the most effective WT/PV/DG/Battery configuration.

Figure 7. Summarizes the NPC of the optimal PV/DG/WT/battery hybrid configuration.
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Figure 8. Compares the yearly nominal cash flow differences between the most efficient (a) and base systems (b).

Figure 9. A breakdown of the total cash flow in relation to the suggested system and the original system.

tool, analyzing environmental, technological, and economic
aspects. It evaluates the long-term viability using NPC and
COE metrics, sensitivity analyses, and input variables. In
brief, the primary findings of this research are delineated as
follows:

• The PV/WT/DG/battery configuration is the most eco-
nomically advantageous hybrid system. The LF strategy
results in the lowest NPC ($109 307) and COE (0.103
$/kWh) for this system, making it the most environ-
mentally friendly with CO2 emissions of 10 825 kg/yr.
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Table 8. Emissions are released from every conceivable system

Pollutant Quantity (kg/yr)

CO2 11 229
CO 70.1
UHC 3.09
PM 0.420
SO2 27.5
NO2 65.9

Table 9. The ideal system parameters’ sensitivity analysis variables span a broad range

Sensitivity parameters Unit Ranges

Nominal discount rate % 6–7, intervals 0.25
Solar scaled average kWh/m2/day 5.93–6.21, intervals 0.2
Gasoline cost $/L 0.3067–0.3867, intervals 0.2

Figure 10. The effects of changing the Diesel price and nominal discount % on the system’s NPC and COE.

Figure 11. The effects of scaled yearly average radiation and variations in diesel prices on the system’s NPC and COE.

Conversely, the PV/DG system employing the LF strategy
is deemed economically unfeasible due to its notably high
NPC of $350 309 and COE of 0.331$/kWh. The system’s
high initial cost, high energy costs, and high CO2 emis-

sions due to the absence of PV panels and wind turbines
contribute to its high initial cost.

• The most efficient PV/WT/DG/battery system uses PV
power for 77.1% of total electricity production, with
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Figure 12. The effects of changes in diesel prices and scaled yearly average radiation on fuel consumption and the renewable proportion.

Figure 13. The effects of scaled yearly average irradiance and variations in diesel price on CO2 emissions and COE.

Figure 14. The changes in diesel price and scaled annual average irradiation on excess electricity percentage and COE.

diesel and wind power for 12.7% and 10.2%, respectively.
The system generates an excess of 7151 kWh/yr (8.81%)
annually.

• The optimal nominal discount rate, ranging from 6%
to 7%, significantly impacts the system’s NPC value,
highlighting the importance of selecting the right rate.
Furthermore, when diesel fuel prices climb from 0.3067

$/L to 0.3867 $/L, the COE and NPC values of the ideal
system increase, indicating that high diesel costs negatively
impact the financial elements of DG-based hybrid systems.

Overall, the primary findings of the techno-economic opti-
mization indicate that the hybrid PV/WT/DG/battery is the
best choice for a rural health center in Rijal Almaa village.
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