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1. Introduction 

 

      Predicting the chemical thermodynamic properties of 

pure materials and mixtures is a vital matter for industrial 

purposes [1], [2]. Converting scientific data to engineered 

products in the industry requires reliable methodologies 

that could provide necessary data where those data are not 

available [3]. Many efforts were taking place to develop 

models that could predict the thermodynamic properties 

[4]–[6]. Local composition models [7], [8], cubic 

models[9], [10], statistical thermodynamics models such 

as statistical associated fluid theory (SAFT) are 

successful models that are used extensively [11]–[13]. 

Recently, developed models based on quantum and 

statistical mechanics for equilibrium thermodynamics 

such as COSMO-RS have also shown good performance 

[14], [15]. All of these cases involve complex 

calculations with a long computational time that may be 

an obstacle for a researcher in the process of conducting 

applied studies in chemistry and chemical engineering. 

     COSMO-SAC model is commonly used for the 

activity coefficient calculation of mixtures. [16] It works 

based on the statistical thermodynamics that gets σ-

profiles from quantum mechanics calculations as input. 

Generally, dmol3 was used for geometry optimization 

and minimization of molecule energy, and evaluation of 

σ-profiles.[17] Also, the COSMO-SAC model provides 

good results for the activity coefficient with a low 

deviation from experimental results. Indeed, it has a good 

reputation and is considered a reliable method in the 

prediction of the activity coefficient of organic 

materiTaals. Also, it has been shown that the COSMO-

SAC thermodynamic properties depends on the chemical 

family rather than the size of the molecule that makes it 

powerful tool for the purpose of this study.[18] 

     Various validated databases in chemistry are 

developed for the military, industrial, pharmaceutical, 

and educational purposes. One of the most reliable 

thermochemical databases is created by the National 

Institute of Standards and Technology (NIST) that is the 

most reliable database for materials thermochemical 

information [19], [20]. However, some valid datasets are 
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also available as open-source physicochemical 

information of materials that are created by different 

research teams, such as the MGCDB84, GMTKN55, and 

Minnesota Database databases [21]–[23] that are the 

result of quantum computing. The FreeSolv dataset was 

published as open-source that contains the free energy of 

the low molecular weight organic molecules including 

different functional groups mainly pharmaceutical 

substances [24]. Generally, it includes experimental data 

combined with quantum computational data (DFT) and 

molecular dynamics that make it an appropriate dataset 

for machine learning uses. 

     Machine learning (ML) is an artificial intelligence 

branch that could be used for the prediction of a variable 

with an automated process without the need for explicit 

programming [25]. The ML is based on the data analysis 

that began with access to data and uses it for learning. The 

learning process begins with observations of data to find 

instructions with specific patterns in the data. In this 

respect, the data are divided into two parts: training data 

and test data. There are many different algorithms for 

machine learning, and they are typically categorized as 

supervised learning, unsupervised learning, and semi-

supervised learning [26].  

     Enthalpy of hydration is mainly an essential parameter 

for estimating different thermodynamic and chemical 

engineering variables such as solubility, required heat for 

processing, etc. [27], [28]. Generally, measurement of 

this quantity requires a precise and expensive 

microcalorimeter or it is impossible to measure it in the 

determined conditions due to degradation of the material 

[29], [30]. Prediction of the enthalpy of hydration with 

acceptable accuracy for organic materials, especially 

medicinal products is a vital matter that could be used 

effectively to accelerate the engineered processes [31]–

[33]. As previously mentioned, the time-consuming and 

complex quantum computational methods are limiting 

factors for industrial purposes. In this regard, machine 

learning can help speed up the calculations to obtain the 

required enthalpy of hydration of material with proper 

initial inputs.  

The FreeSolv dataset includes the free energy of 

hydration for low molecular weight organic molecules 

[24]. There are experimental, DFT calculations, and 

molecular dynamics data including different 

thermodynamic properties and molecular descriptive in 

the FreeSolv [24]. The FreeSolv dataset has been merged 

with a produced COSMO-SAC dataset including infinite 

dilution activity coefficient of the low molecular weight 

organic materials in various solvents such as water, 

ethanol, methanol, benzene, and toluene. Different 

machine learning methods such as support vector 

machine, random forest, and gradient boosting decision 

tree are used to predict the enthalpy of hydration.  

 

2. Materials and methods 

2.1. COSMO-SAC model 
 

    The procedures have been implemented with python in 

the Jupyter environment. Different two PCs with 

different configurations have been used to evaluate the 

results, and the results were identical in the two 

configurations which are important for the repeatability 

of the process. Accordingly, the FreeSolv dataset and 

VT2005 σ-profiles dataset has been used as initial 

data.[24], [34] It should be noted that there were 96 exact 

matches according to the IUPAC names of the materials 

between the two datasets, and it was a limitation of this 

work. The activity coefficients of 96 organic materials 

with different solvents such as methanol, ethanol, 

benzene, toluene, and water in full range composition 

(mole fractions of solute = 0, 0.1, …, 0.9, 1) at 298.15 K 

have been calculated by the open-source benchmark of 

the COSMO-SAC implemented by Bell et al. A detailed 

information is available in the corresponding paper. Also, 

it is accessible from the GitHub repository [35].  

2.2. Machine learning 

2.2.1. Support vector machine regressor 

     The model generated by the support vector machine 

(SVM) classifier depends only on a subset of the training 

data where the cost function for constructing the model 

does not matter to the training data that are beyond the 

margin. Similarly, the model generated by SVR depends 

only on a subset of the training data, because the cost 

function ignores samples whose prediction is close to the 

target. Selecting the appropriate kernel for subset tuning 

will be the main issue using this method. In this research, 

Gaussian, sigmoid, and polynomials kernels of SVR have 

been used [36] for prediction of enthalpy of hydration of 

organic materials. 

2.2.2. Random forest regressor 

    Random Forest is a meta-estimator that fits 

classification decision tree sets on different sub-set of the 

dataset and uses averaging to improve forecasting 

accuracy and over-fitting control. Decision trees are a 

non-parametric supervised learning method used for 

classification and regression. Therefore, the random 

forest has been used as a white-box model with simple 

interpretation while the black-box models (for example, 

in an artificial neural network), and interpretation of the 

results may be more difficult. It is possible to validate the 

model using statistical tests, which increases the 

reliability of the model. Also, it has a good performance 

and no major difference will be created even if its 

assumptions are partially violated by the actual model 

from which the data is derived [37]. 

2.2.3. Gradient boosting decision tree regression 

(GBDTR) 

    The GBDTR makes a cumulative step-by-step model 

and makes it possible to optimize arbitrary distinct cost 

functions. At each step, a regression tree is proportional 
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to the negative gradient of the cost function is established. 

The BBDTR is a generalized model of boosting to 

arbitrary distinguishable loss functions from the decision 

tree. It is an accurate and effective method that can be 

used for regression and classification problems in various 

fields such as search space ranking. Another advantage of 

this method is the ability to construct a mathematical 

formula from a regression problem, which allows 

providing a comprehensive formula for the regression 

performed, in which case the importance of the properties 

can also be examined [38]. 

2.3. Assessment efficiency of machine learning prediction 

In statistics, the mean absolute error (MAE) is a measure 

of the errors between pairwise observations that express 

a phenomenon. The sample of Y versus X include a 

comparison between the predicted value versus the real 

value of the label that is calculated as follows: 

𝑀𝐴𝐸(𝑦, 𝑦̅) =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̅|

𝑛−1
𝑖=0           (1) 

The means squared error function has been used to 

evaluate the performance of the machine learning 

method. In statistics, the mean squared error of the 

estimator measures the mean squared error. There is a 

risk function between the estimated values and the actual 

value of the variable that corresponds to the expected 

value of the square error. Information that can provide a 

more accurate estimate, which is calculated as follow: 

𝑀𝑆𝐸(𝑦, 𝑦̅) =  
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛−1
𝑖=0           (2) 

Also, the root mean square error is evaluated using 

following relation: 

𝑀𝑆𝐸(𝑦, 𝑦̅) =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑛−1
𝑖=0           

(3) 

These three statistical variables are the criteria for the 

assessment of the ML methods accuracy and reliability in 

the prediction. 

3. Results and Discussion 

3.1. COSMO-SAC model for infinite dilution activity 

coefficient  

Basically, the COSMO-SAC model uses the quantum 

mechanics data through a statistical mechanic approach 

to evaluate the thermodynamic properties of a system. 

This aim starts with σ-profiles and continues with a series 

of equation to reach the activity coefficients [16]. Also, 

the evaluated activity coefficients could be used through 

the thermodynamic relation to calculate the Gibbs free 

energy. 

The activity coefficient of the organic compounds in 

different solvents has been predicted using the COSMO-

SAC model. This model use σ-profiles of the materials to 

evaluate the thermodynamic properties based on the 

statistical thermodynamic relations [16]. The 

corresponding σ-profiles for the studied materials are 

available in VT2005 dataset [24], [34]. The predicted 

activity coefficient data for binary mixtures of thiophene 

in the studied solvents have been illustrated in Fig 1 as an 

example. Also, the infinite dilution activity coefficients 

of these materials are given in Tables 1 in different 

solvents such as water, ethanol, methanol, benzene, and 

toluene. 

 

 

 

 

Figure 1. The activity coefficients of the binary mixture’s 

components including thiophene in different solvents (water, 

ethanol, methanol, benzene, and toluene) versus the mole 

fraction of thiophene using COSMO-SAC under 0.1 MPa 

pressure at 298.15 K. 

The pioneers and the developers of the COSMO-SAC 

model have shown that the model is quite reliable.[16]–

[18], [34], [39]–[41] On the other hand, the integrity of 

the evaluated data with the COSMO-SAC is more 

important rather than the accuracy of the data, and no data 

comparison with experimental results has been carried 

out. The COSMO-SAC uses the quantum mechanics data 

as primary data and evaluates chemical thermodynamic 

data.[42] These two types of data might be in 

contradiction due to their different microscopic and 

macroscopic approaches. Accordingly, the evaluated data 

has been used without validation in the machine learning 

process.Base on the thermodynamics rules the activity 

coefficient of a chemical directly depended on the Gibbs 

free energy while it is relationship with enthalpy is much 

more complex. Accordingly, a simple regression could 

not used to predict the enthalpy with activity coefficient. 

At this point, the machine learning regression could be 

used in the prediction of the enthalpy of hydration based 

on the infinite dilution activity coefficient of a chemical 

in different solvents at given temperature and pressure. 

3.2. Machine learning prediction of enthalpy of hydration 
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A pre-processing step was required to match whole 

variables based on the units, significant digits, and other 

parameters. The pre-processing has been carried out with 

python encoding of the evaluated COSMO-SAC dataset 

and FreeSolv dataset. The datasets have been merged and 

prepared for the machine learning regression process. It 

should be noted that this step of the procedure is crucial 

before executing machine learning and a little conflict 

might cause significant errors in results. Accordingly, the 

dataset has been checked manually for any defection after 

all automated procedures. 

 
 

Table 1. The infinite dilution activity coefficient (γ∞) of some organic materials calculated with COSMO-

SAC model under 0.1 MPa at 298.15 K. 

Compound Name γ∞ 

 Water Benzene Toluene Ethanol Methanol 

TOLUENE 4607.74 1.024963 1 2.831673 5.66182 

1-NITROBUTANE 1502.968 1.086386 1.211993 2.39232 4.183599 

2-NITROPROPANE 357.1037 1.109689 1.264321 2.20636 3.391647 

THIOPHENE 482.2757 1.004869 1.056671 1.775255 2.868932 

ETHYLENE 67.63741 1.001869 1.001967 1.693681 2.384917 

2-BUTOXYETHANOL 1284.476 11.54071 12.95789 1.136087 2.080568 

CYCLOHEXENE 36110.42 1.376674 1.185683 3.554677 7.698908 

PIPERAZINE 2.555234 3.16513 3.756248 0.117807 0.074906 

O-CRESOL 399.1619 1.763261 2.013672 0.360845 0.748153 

PYRROLE 8.400408 3.95112 4.91893 0.085345 0.152817 

INDANE 29574.31 1.119021 1.027768 3.745279 8.91272 

ISOBUTANE 6704.744 1.795927 1.463579 3.909756 8.331183 

PYRROLIDINE 41.07241 1.621331 1.617396 0.345506 0.363241 

P-XYLENE 22676.63 1.100848 1.020159 3.546547 8.21727 

PYRENE 1205668 1.067918 0.953135 4.377152 13.97494 

NITROBENZENE 1703.4 1.094654 1.226589 2.474726 4.259157 

1-METHYLNAPHTHALENE 53959.37 1.013451 0.993618 3.548059 8.59341 

NAPHTHALENE 15133.97 0.988594 1.003646 2.925318 6.286829 

ACETONE 9.59154 0.954739 1.158579 1.285666 1.318272 

METHYLCYCLOHEXANE 125171.2 2.386617 1.792137 6.530031 17.88058 

ACETONITRILE 7.085093 2.824741 3.829731 2.714958 2.591342 

2-METHYLPYRIDINE 149.8361 1.01337 1.10866 0.931551 1.139583 

BENZENE 1041.27 1 1.021475 2.336048 4.054609 

METHANE 67.42368 1.297832 1.179531 1.878916 2.695403 

P-CRESOL 275.5887 6.094782 6.852709 0.218295 0.494917 

3-METHYLHEXANE 516316.5 2.512464 1.836551 7.869931 24.33865 

CYCLOPENTENE 2688.153 1.273184 1.127777 2.952746 5.813084 

3-METHYLPYRIDINE 105.622 0.992501 1.099709 0.847358 0.980889 

METHANOL 3.068168 29.72688 36.09604 1.017971 1 

CYCLOHEXANOL 428.6342 9.52625 9.839024 1.257546 1.831696 

ETHANOL 9.129828 13.42828 15.70898 1 1.03061 

IODOBENZENE 8319.385 0.957857 0.929615 2.270389 4.725659 

MORPHOLINE 8.486411 1.629723 1.955081 0.467688 0.402831 

CHLOROFORM 313.3233 0.863334 0.795296 0.184994 0.408778 

2-CHLOROBUTANE 4244.71 1.083709 1.017008 2.891984 5.831206 

2-ETHOXYETHANOL 80.15009 12.98919 15.81315 0.969956 1.361784 

2-BROMOPROPANE 1326.125 1.014375 0.998383 2.472567 4.465382 

BENZONITRILE 596.9878 1.263966 1.502918 2.397146 3.663027 

ANTHRACENE 536203.1 1.05441 0.961368 4.149903 12.34225 

M-CRESOL 86.54336 2.908726 3.314322 0.047316 0.118839 

ANILINE 72.91311 1.751454 2.174237 0.109579 0.218697 

CYCLOHEXANONE 96.35549 0.757274 0.842338 1.31383 1.69736 
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ACETALDEHYDE 6.825299 1.158496 1.425218 1.636963 1.67869 

BENZALDEHYDE 434.4909 1.137095 1.331367 2.283804 3.363647 

ACENAPHTHENE 164042.2 1.144738 1.029774 4.383909 11.98834 

PHENOL 17.98833 2.9975 3.554209 0.03095 0.069694 

M-XYLENE 21057.34 1.090546 1.016146 3.515932 8.088803 

2-METHOXYETHANOL 20.32428 15.06353 19.21088 0.955238 1.166887 

METHYLCYCLOPENTANE 43985.54 2.147471 1.661206 5.420284 13.57042 

CYCLOHEXANE 36110.42 2.199196 1.699449 5.382837 13.243 

ACETAMIDE 1.968434 815.2329 1218.74 1.487955 1.062032 

1-CHLOROBUTANE 5695.793 1.092603 1.019959 2.950836 6.101385 

1-BROMOHEPTANE 746649.9 1.401003 1.160729 5.798153 18.39757 

2-PHENYLETHANOL 1044.872 6.176531 7.283265 0.957373 1.727539 

DIBROMOMETHANE 182.2753 0.853986 0.873482 0.441019 0.771225 

PHENANTHRENE 401476.4 1.030535 0.950743 3.876605 11.22711 

PIPERIDINE 158.414 1.599406 1.527754 0.47179 0.572053 

PYRIDINE 35.5597 1.132025 1.305483 0.884268 0.922824 

HYDRAZINE 0.034717 31.08734 47.28629 0.225602 0.075435 

BROMOBENZENE 5003.623 0.959659 0.936149 2.178889 4.347208 

N-PENTANE 39791.7 2.12482 1.648148 5.31261 13.18544 

O-XYLENE 15565.94 1.061277 1.006018 3.350859 7.478149 

3-METHYLHEPTANE 2455148 2.834881 1.993342 10.13725 35.83899 

ETHANE 404.6412 1.543673 1.334523 2.575437 4.308259 

DICHLOROMETHANE 96.67328 0.858001 0.884986 0.435087 0.714049 

STYRENE 6558.368 0.99514 1.018289 2.728007 5.47113 

SEC-BUTYLBENZENE 219925.6 1.201203 1.059403 4.72396 13.35115 

PROPANE 1792.976 1.678297 1.405363 3.221053 6.127064 

HEXACHLOROETHANE 204436 1.527744 1.213086 4.326106 12.2774 

1-NITROPROPANE 382.3169 1.175002 1.363469 2.255589 3.444005 

1-BROMOBUTANE 7556.534 1.09394 1.019452 3.023963 6.401466 

FLUOROBENZENE 1622.244 0.961736 0.960846 1.98872 3.59366 

1-ETHYLNAPHTHALENE 197526 1.052595 0.995706 4.245522 11.59623 

TETRAHYDROFURAN 57.02092 0.818083 0.84287 1.045901 1.282599 

CYCLOPENTANONE 33.86651 0.799311 0.928438 1.262986 1.471186 

HEXACHLOROBENZENE 7492273 2.067729 1.50015 8.42132 32.56266 

1-BROMOPROPANE 1703.173 1.034672 1.001359 2.492793 4.617258 

ISOBUTYLBENZENE 274990.8 1.243559 1.079586 4.899099 14.14769 

AMMONIA 0.035364 6.879251 9.123908 0.114445 0.048416 

NITROMETHANE 30.56728 2.504135 3.226734 2.040181 2.397103 

FORMALDEHYDE 6.761536 1.595174 1.942322 2.140616 2.208623 

4-METHYLPYRIDINE 98.57728 0.98488 1.094641 0.817215 0.935092 

GLYCEROL 3.514602 218.6327 355.2905 1.512473 1.263066 

TERT-BUTYLBENZENE 139255.5 1.161734 1.041633 4.409316 11.9489 

QUINOLINE 972.5715 1.080042 1.20573 1.375235 1.975477 

SULFOLANE 34.83991 1.450592 2.140087 3.159531 3.481822 

N-BUTANE 8366.406 1.885813 1.520299 4.127596 8.960831 

OCTAFLUOROCYCLOBUTANE 108346.3 1.962956 1.489617 4.495705 12.18102 

2-METHYLTHIOPHENE 2267.019 1.005446 1.007084 2.390142 4.465463 

2-METHYLHEXANE 613698.5 2.539177 1.849543 8.103687 25.442 

QUINONE 143.3082 1.739593 2.321355 2.783526 3.623203 

DIIODOMETHANE 612.2563 0.851717 0.854786 0.602674 1.136215 

CYCLOPENTANE 10647.03 1.944532 1.555703 4.333652 9.604323 

CHLOROBENZENE 4031.099 0.967464 0.938451 2.148591 4.223395 
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ETHYLBENZENE 17458.51 1.073951 1.010135 3.411851 7.709983 

N-METHYLACETAMIDE 3.462217 30.44725 40.68785 0.84572 0.61492 

 

 

The support vector, random forest, and gradient 

boosting decision tree regression methods have been 

applied to predict the enthalpy of hydration of organic 

materials with low molecular weight that are randomly 

selected with the automatic modules of Python scikit 

learn. The performance of studied ML methods in the 

predicting of the enthalpy of hydration is discussed for 

the studied methods with various train and test subsets 

ratios.  The results of the applied ML methods have 

been evaluated with a different train and test ratio with 

0.05:0.95, 0.10:0.90, 0.15:0.85, 0.20:0.80 and 

0.25:0.75 to investigate the effect of the data training 

on the accuracy of the prediction.  

The corresponding mean absolute error and mean 

square errors of the ML methods with different training 

and testing rates is summarized in Table 2 for the SVR 

to compare the kernels performance. Evidently, the 

reduced training rate led to increase the MAE and MSE 

values for the ML methods as demonstrated in Table 2. 

However, the results are not good enough that might be 

due to the origin of the SVR that comes from elastic net 

regression that is a type of linear regression. 

 
Table 2. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using SVR with different kernels under 0.1 

MPa at 298.15 K. 

Train: Test ratio MAE MSE RMSE 

SVR-Polynomial  

0.05: 0.95 3.11 15.94 3.99 

0.10: 0.90 3.09 15.23 3.90 

0.15: 0.85 4.04 25.40 5.04 

0.20: 0.80 4.18 23.17 4.81 

0.25: 0.75 8.43 72.04 26.88 

SVR-Gaussian 

0.05: 0.95 3.12 15.98 3.99 

0.10: 0.90 3.09 15.23 3.90 

0.15: 0.85 4.15 27.27 5.22 

0.20: 0.80 4.23 24.10 4.91 

0.25: 0.75 3.01 13.91 3.73 

SVR-Sigmoid 

0.05: 0.95 3.09 15.74 3.97 

0.10: 0.90 3.05 15.04 3.88 

0.15: 0.85 3.93 25.57 5.06 

0.20: 0.80 4.18 23.48 4.85 

0.25: 0.75 3.26 14.97 3.87 

Overfitting and bias should be resolved in any 

regression problem. Avoiding bias and overfitting 

could be vanquished using another ML method named 

support vector regression (SVR) that is developed with 

an evolutionary process starting from linear regression, 

lasso, ridge, elastic net, and SVR. Also, the SVR 

includes different kernels that could be used to find the 

data distribution type and could be used to find the 

importance of the features in the regression [43]. In the 

SVR method, the degree of bias towards a particular 

result is much less than other methods. Since the degree 

of bias is low in this method, it has been used as 

reliability to interpret the observed linear relationship. 

In this respect, the SVR kernels including polynomial, 

Gaussian, and sigmoid have been used. The linear 

kernel shows the lowest regression error rate, indicating 

that linear relationships that were previously detected 

are still exist after all processing.  

According to the results of the SVR machine learning, 

some other machine learning methods should be used 

to overcome these problems. The gradient boosting 

decision tree regression (GBDTR) is an effective 

method that is comparable to the random forest 

regression (RFR) [44–46]. The results for predicting 

enthalpy of hydration of low molecular weight 

molecules using RFR and GBDTR ML methods are 

given in Fig 2 for the train and test ratio of 0.80:0.20. 

Both methods have been able to accurately predict the 

enthalpy of hydration of the test data.  

b a 

  
Fig 2. The scattering plot of predicted Enthalpy of hydration 

values of tested molecules versus the FreeSolv dataset values 

with a train and test ratio of 0.80:0.20: a) RFR, b) GBDTR. 

 

Also, the corresponding deviations of the RFR and 

GBDTR have been given in Tables 3 and 4, 

respectively. As could be seen the results does not have 

significant differences while the RFR shows higher 

accuracy rather than the GBDTR. This could be related 

to the lower depth of decision trees in the GBDTR 

rather than the RFR. It means, the prediction of the 

enthalpy of hydration needs decision trees with higher 
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depth with infinite dilution activity coefficient. 

However, the GBDTR is a faster method rather than the 

RFR due to its practical use in the higher data training 

rate. Accordingly, both RFR and GBDTR could be 

used to predict the thermodynamic properties with 

higher degree of complexity between the label and 

existing thermodynamic features. 

 
Table 3. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using RFR under 0.1 MPa at 298.15 K. 

Train: Test ratio MAE MSE RMSE 

0.05: 0.95 0.61 0.44 0.66 

0.10: 0.90 0.83 1.06 1.26 

0.15: 0.85 0.87 1.20 1.32 

0.20: 0.80 0.89 1.35 1.46 

0.25: 0.75 0.93 1.50 1.52 

 

 

Table 4. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using GBDTR under 0.1 MPa at 298.15 K. 

Train: Test ratio MAE MSE RMSE 

0.05: 0.95 0.71 0.62 0.79 

0.10: 0.90 0.83 1.21 1.10 

0.15: 0.85 0.90 1.69 1.30 

0.20: 0.80 0.96 2.43 1.56 

0.25: 0.75 1.22 2.58 1.60 

 

4. Conclusion 

Different machine learning methods have been utilized 

to predict the enthalpy of hydration of low molecular 

weight organic molecules that were common between 

the FreeSolv open-source dataset and VT2005 σ-

profiles dataset. Since there is no linear relationship 

between the activity coefficients and enthalpy of 

hydration, machine learning approach has been used to 

predict the enthalpy of hydration of the low molecular 

weight organic molecules using infinite dilution 

activity coefficient evaluated from COSMO-SAC 

model. The SVR, RFR, and GBDTR machine learning 

methods used to predict of enthalpy of hydration. 

However, the RFR and GBDTR have more accuracy in 

the prediction of enthalpy of hydration rather than the 

SVR. This might be related to the bias in SVR method 

and corresponding overfitting or underfitting problems. 
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