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Abstract
In this study, we introduce and examine a novel multigeneration cycle powered by low-carbon bio-waste and
integrated with a solar thermal component. This system is designed to convert sewage sludge into a variety
of useful products. The cycle utilizes anaerobic digestion and gasification to produce biogas and syngas.
Additionally, it incorporates processes for generating water and hydrogen energy, utilizing the atmospheric
water harvesting unit and water/gas shift reaction, sequentially. The system employs a Rankine cycle, a
Brayton cycle and two organic Rankine cycles (ORCs) for electricity generation. A significant portion of the
heat and electricity in this proposed project is sourced from a waste heat recovery system. This innovative
project not only presents a new structure and configuration for product generation but also addresses energy,
water and environmental challenges concurrently. The energy system’s performance has been thoroughly
assessed in terms of thermodynamics, environmental impact and economic feasibility. The proposed plant
is capable of producing an estimated 17 920 kW of electric power, 3207.6 kg/h of hydrogen energy and
5.14 × 10−3 L/s of freshwater. Under these design conditions, the energy and exergy efficiencies of the system
were determined to be 35.76% and 40.49%, respectively. Additionally, the exergy sustainability factor, the
levelized total emitted carbon dioxide and the unit cost of total products were characterized to be 52.28%,
0.2145 kg per kWh and 0.05219 $ per kWh, respectively.
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1. INTRODUCTION
In contemporary times, the rapid social and industrial advance-
ments have made water and energy essential for societal needs.
Energy security and sustainability are crucial for achieving sus-
tainable development, as highlighted in various studies [1, 2].
Despite the Earth’s vast coverage by seas and oceans, there are

significant challenges and limitations in accessing clean, drinkable
and industrially usable water resources [3, 4]. Simultaneously,
the reliance on fossil fuels for a substantial portion of energy
demands leads to severe environmental degradation [5]. Tradi-
tional energy systems often exhibit low energy conversion per-
formance, resulting in significant wastage of recoverable energy.
This not only harms environmental and human health but also
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diminishes theirs effectiveness and sustainability [6, 7]. Against
this backdrop, industrial and municipal wastewater treatment
emerges as a viable solution to the crisis of water resource short-
ages [8, 9]. Recently, integrated energy systems capable of produc-
ing multiple outputs have gained popularity [10, 11]. These sys-
tems can provide environmental and economic advantages while
enhancing performance, whether implemented for distributed
generation systems or plant-scales purposes [12, 13]. Studies indi-
cate that the recovery of waste heat from different units can
heighten energy production efficiency and lessen environmental
impacts associated with waste discharge [14]. Moreover, employ-
ing wastewater treatment processes and waste energy recovery
from these plants, as a form of biomass fuel, has been identified as
an effective way to protect the environment via waste-to-energy
conversion [15, 16]. Although multigeneration systems often rely
on fossil fuels, their detrimental environmental impacts have led
scientists to favor renewable and green energy sources [17]. Solar
energy [18, 19] and biomass fuel, as renewable energy sources,
are increasingly integrated into multigeneration systems, offering
a promising solution [20–22]. Among various biomass sources,
bio-waste, particularly sewage sludge exit wastewater treatment
units, stands out as a valuable resource that does not compete with
the food chain [23–25].

Water and electricity, as primary societal necessities, are desir-
able outputs of any multigeneration systems. Additionally, heating
load from solar/biomass-based plants and hydrogen gas as a clean
fuel are also valuable products of these systems [21, 26, 27].
Hydrogen production can stem from various processes, including
biomass energy conversion, water electrolysis and reforming of
fossil energies [28], with its environmental friendliness being
enhanced when based on renewable sources [29]. Freshwater pro-
duction through desalination is a newer solution to water scarcity,
though it can be expensive for regions distant from seawater
sources [24]. The atmospheric water harvesting unit (AWHU) has
recently emerged as a cost-effective method for producing water
for different purposes, especially when integrated with renewables
such as biomass energy [30].

Assareh et al. [31] conducted a study focusing on the energy
and exergy evaluations of a plant that harnesses both biomass
and solar energies. The system was coupled with the hydrogen
liquefaction and heat recovery units. Their findings showed the
system’s electricity and exergy efficiency to be ∼7900 kW and
11%. In a separate study, Prieto et al. [32] devised a thermal model
for a solar collectors and biomass boiler-powered greenhouse,
incorporating an absorption chiller to adapt to both winter and
summer conditions. Simulating this setup for a tomato crop in
Mediterranean climates, they discovered the system’s potential
to yield ∼26.3 kWh/m2 for heating and 62 kWh/m2 for cooling.
Additionally, the solar fraction and biomass operational cost were
estimated at about 55% and 2.7 e/m2/year, respectively. Wang
et al. [33] explored the integration of solar and biomass green
energy sources, finding a potential reduction in carbon dioxide
emissions by roughly 35%.

Chen et al. [34] developed a novel power generation system that
utilized sewage sludge drying and incineration, where fuel was

first dried utilizing steam (at low pressure) before incineration
in a boiler, the output of which fed a steam turbine. Rulkens
[35] highlighted that among the various approaches for managing
sludge from municipal wastewater treatment plants, energy pro-
duction stands out as a key strategy. The literature also indicates
that organic Rankine cycles (ORCs) are gaining popularity in
power generation, especially when coupled with the biomass-
assisted units. Moreover, ORCs, capable of generating electric
power through a common Rankine cycle utilizing a low-grade
heat source, can be effectively employed as a heat recovery unit
in bottoming processes [36].

A thorough review of existing literature reveals that there are
very few studies on the concurrent utilizing of biogas and syngas
generation processes via the sewage sludge’s anaerobic diges-
tion and subsequent gasification of digestate. In response to this
gap, a new bio-waste-based multigeneration plant (BWMGP) that
incorporates a solar farm is introduced under the generation
of diverse products such as electric power, freshwater, heat and
hydrogen gas. This proposed MGP harnesses syngas and bio-
gas from gasification and anaerobic digestion units, sequentially.
Moreover, the production of water and hydrogen energy involves
the AWHU and water/gas shift reaction ones. Additionally, a
significant portion of heating capacity and electricity is derived
from a waste heat recovery system, contributing to environmental
conservation by minimizing waste discharge. This project, there-
fore, not only introduces an innovative structure and configura-
tion for generating useful products but also addresses a notable
research gap in bio-waste-driven MGPs. Particularly, the coupling
of the AWHU with BWMGPs has seldom been explored in previ-
ous research. Furthermore, the generation of green hydrogen via
a BWMGP-based water/gas shift reaction presents a promising
avenue for reducing environmental harm. The performance of
this energy system has been extensively assessed from thermody-
namic, financial and environmental perspectives.

2. METHODOLOGY
The envisioned BWMGP is designed to utilize sewage sludge, a
form of bio-waste, as its primary input. This innovative project is
not only geared toward the production of diverse products from
sewage sludge but also aims at significantly mitigating environ-
mental impacts that arise from the disposal of sewage sludge.
Managing sewage sludge through such a system could lead to
substantial savings for the organizations involved [37, 38].

As illustrated in Figure 1, the BWMGP’s design incorporates
an interconnection of various units. These include three distinct
power generation cycles—the Rankine cycle (steam turbine,
STurb), the Brayton cycle (gas turbine, GTurb), and the ORC
that utilizes a STurb in conjunction with an organic stream.
The Brayton cycle is fueled by the biogas produced, while the
other two cycles utilize flue gas for power generation. It is
important to note that the syngas and biogas essential for these
processes are derived from gasification and digestion cycles.
In addition to power generation, the BWMGP features cycles
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Figure 1. The design and structure of the proposed BWMGP.

for producing hydrogen energy and fresh water. The entire
system of the BWMGP, including the intricate interplay of these
various components, has been simulated using MATLAB and
Aspen-HYSYS software, ensuring a comprehensive analysis of its
functionality and efficiency. This research stands out due to its
multifaceted approach, not only in terms of energy and resource
generation but also in its potential to offer environmentally
sustainable solutions for sewage sludge management, which is
a growing concern in many parts of the world.

3. MATHEMATICAL MODELING
The mathematical model developed for this study is grounded
in analyses of thermodynamics, exergoeconomics and environ-
mental factors. Fundamental to the energy/exergy analysis are
the first and second thermodynamics laws [39, 40]. These laws

guide the formulation of mass/energy equilibriums (stemming
from the first law) and the exergy equilibrium (derived from
the second ones). For any designated control volume within the
system, these critical relationships are established in accordance
with the principles outlined in references [41, 42]

∑ .mi −
∑ .mo = 0 (1)

∑ .mi.hi −
∑ .mo.ho = .

W − .
Q (2)

∑ .
Ei + .

Eq − .
ED =

∑ .
Eo + .

Wcw. (3)

In accordance with the energy equilibrium, the formulation
for calculating the electricity produced by the STurb or GTurb
and the pump’s consumed power are as follows, as referenced
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Table 1. The proximate and ultimate assessments of the sewage sludge
under consideration.

Ultimate analysis (wt.%) Proximate analysis (wt.%)

H C N O S MC Ash VM

4.50% 37.0% 3.30% 19.50% 0.65% 75.0% 30.0% 65.0%

MC: Moisture content, VM: Volatile matter.

in [43, 44]:
.

WSTrub/GTurb = .mi × (hi − ho) (4)

.
WPu = .mi × (ho − hi) . (5)

From an exergy perspective, the exergy flow of a given point
includes kinetic, potential, chemical and physical components
[45, 46]. However, for practical calculations, the kinetic and
potential terms are often negligible. Therefore, the exergy of each
stream is primarily calculated based on its chemical and physical
attributes, as detailed in the following formulation [47]:

ex = exch + exph. (6)

Furthermore, the total destroyed exergy of the offered BWMGP
is [48, 49]

.
ED,tot =

∑ .
Ek. (7)

The energy cycle in the study begins with the sewage sludge’s
digestion process from a Water Treatment Plant. Table 1 presents
the proximate and ultimate assessments of the sewage sludge
under consideration. Drawing from existing literature [50], the
biogas captured during this process is assumed to be composed
of 40% CO2 and 60% CH4. Based on this composition, the overall
reaction for the sewage sludge’s digestion is formulated as follows
[51]:

CaHbOc + (a − 0.25b − 0.5c) H2O → (0.5a + 0.125b
− 0.25c) CH4 + (0.5a − 0.125b + 0.25c) CO2

. (8)

The required thermal duty for the digestion cycle described is
equated to the required thermal to raise the water temperature
from the initial value to the required ones for the digestion cycle,
as outlined in [52]

.
QDGC = .m × CP × (TDGC − Ti) . (9)

In this context, the subscript ‘DGC’ is used to denote the
digestion cycle. Furthermore, ‘ṁ’ represents the mass flow rate,
while ‘CP’ refers to the specific heat capacity of water [53].

Subsequent to the anaerobic digestion, the resultant by-
product, known as digestate, is then processed in a gasifier
to produce syngas. The overall reaction for this steam-based

gasification process is described as follows [54]:

CHaOb + ωH2O + αH2O →
β1H2 + β2CO2 + β3CO + β4CH4 + β5H2O. (10)

In this formulation, ‘ω’ signifies the moisture mole, and ‘α’
represents the mole of added steam, as detailed in [55]

ω = MC × MDG

18 − 18 × MC
, RSB = 18 × α

MDG + 18 × ω
. (11)

In the steam-assisted gasification cycle, an allothermal reaction
occurs, where the necessary heat is provided by an external unit.
Solar energy is a popular, abundant and clean resource [56]. Solar
collectors produce the required steam by converting solar energy
into heat [57]. For the plant in question, this external unit is a solar
filed using linear Fresnel reflector (LFR). The primary energy
input for these concentrating solar collectors is Direct Normal
Irradiance [58]. To model the LFR, a 2D mathematical approach
is employed to calculate the heat output for a single LFR. Based
on this approach, the heat output rate of a LFR can be expressed
through the following formulation, as detailed in references [36,
59]:

.
QLFR = .

Qi − .
Ql,p − .

Ql,f . (12)

The syngas obtained from the gasification process is initially
routed to the Water/Gas Shift Heat Recovery unit (WGSHRU)
for hydrogen production. In this unit, syngas undergoes a trans-
formation into hydrogen gas via a gas/water shift reaction. This
conversion cycle also requires thermal power, typically in the
form of steam, which in this project is supplied by the solar farm.
Additionally, the water produced by the AWHU can be calculated
using the following equation [30]:

.mH2O = (
RAH,25 − RAH,27

) × .mdry−air. (13)

The net output power of the proposed BWMGP is

.
Wnet = .

WBC + .
WRC +

∑ .
WORC −

∑ .
WCP/Pu. (14)

Also, the thermodynamic efficiencies of the proposed BWMGP
are expressed by

ηEN =
.

Wnet + .
QHeating + ( .mH2 × LHV

) + ( .mFW .hFW
)

( .mDG × LHVDG
) + .m38h38 + .m36h36

(15)

ηEX =
.

Wnet + .
E50 + .

E55 + .
EH2 + .

EFW
.mDG × .

EDG + .
E38 + .

E36
. (16)

The LHV of sludge is 18 MJ/kg.
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3.1. Exergoeconomic assessment
Exergoeconomic analysis, which integrates economic aspects
with exergy analysis, is instrumental in unveiling the connection
between the cost of products and thermodynamic inefficiencies.
This analysis begins with the formulation of a cost balance
equation, which can be expressed as follows [60–62]:

.
Zk =

∑ .
Co,k − .

Cq,k −
∑ .

Ci,k − .
Cw,k. (17)

Here, Żk is the capital cost. Also, Ċ denotes the cost rate, as
formulated by [63]

{ .
Zk = Zk×φ×CRF

N×3600 ,
.

C = .
E.c

CRF : Capital recovery factor → CRF = i.(1+i)n

(1+i)n−1
. (18)

Besides that, the total products unit cost of the proposed
BWMGP is

TPCU =
.

CW + .
C42 + .

C26 + .
C50 + .

C52
.

Wnet + .
E42 + .

E26 + .
E50 + .

E52
. (19)

Note that, the CO2 unit damage cost and specific cost of heating
were 0.024 $/kg and 0.04 $/kWh, respectively.

3.2. Environmental assessment
A primary motivation for establishing new BWMGPs, like the
one proposed, is to lessen the environmental impacts associated
with the use of fossil fuels. Consequently, these new systems are
expected to demonstrate enhanced environmental performance
[64]. A significant contributor to environmental pollution is car-
bon dioxide emissions [65, 66]. In the proposed BWMGP, carbon
dioxide emissions primarily arise from the combustion of biomass
energy. The Levelized Total CO2 Emissions (LTE-CO2) for this
system can be estimated using the following method [67]:

LTE−CO2 =
.mCO2

.
Wnet + .

QHeating + ( .mH2 × LHVH2

) + ( .mFWhFW
) .

(20)

4. RESULTS AND DISCUSSION
4.1. Model verification
As the proposed MGP introduces a unique process with an inno-
vative structure and configuration for producing various useful
products, it was essential to validate the models of different units
individually. To this end, the performance of the conducted mod-
elling for the BC was compared with outcomes found in existing
literature, as shown in Table 2A. This comparison demonstrates

Figure 2. A comparison between the exergetic performance of the introduced
system and Arslan and Yilmaz [7] and Safari and Dincer [70].

a high level of accuracy in the simulation. Additionally, the con-
ducted modelling for the gasification unit was compared with
experimental outcomes, with findings listed in Table 2B. This
comparison focused on the overall concentrations of syngas con-
stituents. The results of these comparisons affirm the reliability
and validity of the simulations conducted for the system.

4.2. Overall results
The BWMGP’s performance was thoroughly evaluated through
thermodynamic, exergoeconomic and environmental analyses.
Utilizing the thermodynamic-conceptual simulation developed in
software, detailed thermophysical data for all streams depicted
in Figure 1 were determined. The project yields three valuable
outputs: electricity, water and hydrogen fuel. Based on various
calculations and simulations, the plant is capable of generating an
estimated 17 920 kW of electric power, 3207.6 kg/h of hydrogen
energy and 5.14 × 10−3 L/s of freshwater. The system’s energy effi-
ciency under these design conditions is computed to be 35.76%,
with the exergetic efficiency and destroyed exergy noted at 40.49%
and 144 834 kW, sequentially. Figure 2 illustrates a comparison
between the exergetic performance of the introduced system and
the two systems previously documented in literature.

Figure 3 illustrates the variations in thermodynamic efficien-
cies of the BWMGP as it undergoes the process of unit completion
and integration. This analysis considers six distinct configura-
tions: Mode (I) involves coupling the Brayton power generation
unit with the biomass’s digestion. Mode (II) introduces the inte-
gration of the AWHU with the previously mentioned systems.
Mode (III) incorporates processes for syngas and hydrogen gen-
eration. In Mode (IV), the system is further enhanced by inte-
grating the RC. Mode (V) includes the integration of ORC units,
and finally, Mode (VI) embodies the complete multigeneration
process. The data demonstrate that system integration markedly
enhances thermodynamic performance. Specifically, the energy
and exergy efficiencies in Mode (VI), in comparison to Mode
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Table 2. Model verification: (A) Brayton cycle [68] and (B) gasification unit [69].

A: Brayton cycle

Stream Temperature Mass flow rate Pressure (bar)

1 298.15 K 298.15 K 17 200 kg/h 17 200 kg/h 0.101 MPa 0.101 MPa
3 329.85 K 329.45 K 17 200 kg/h 17 200 kg/h 1.02 MPa 1.018 MPa
7 976.85 K 976.85 K 17 712 kg/h 17 820 kg/h 0.923 MPa 0.923 MPa
9 546.85 K 343.95 K 17 712 kg/h 17 820 kg/h 0.112 MPa 0.112 MPa
B: Gasification unit
Constituent, vol. % H2 CO CO2 CH4
Simulation 43.5% 33.2% 14.5% 9.1%
Literature 43.6% 33.3% 14.2% 8.9%

Figure 3. The variations in thermodynamic efficiencies of the BWMGP as it
undergoes the process of unit completion and integration.

(I), show substantial improvements of ∼130.18% and 131.77%,
respectively. While it is evident that increased electricity produc-
tion substantially boosts the system’s energy efficiency, a notewor-
thy observation is the 15.25% increase in energy efficiency when
transitioning from Mode (V) to Mode (VI), attributable to the
additional heating capacity produced during Mode (VI).

The alteration in the destroyed exergy accounts for this obser-
vation (triggered by the incorporation of new components into
the plant). Mode (III) exhibits the minimum exergy performance
coefficient, attributing this to the gasifier addition, which esca-
lates exergy destruction throughout the energy conversion pro-
cess. Conversely, the depiction of the exergy sustainability fac-
tor and levelized total emitted carbon for the BWMGP across
various stages of completion and unit integration is presented
in Figure 4. The computed exergy sustainability factor for the
proposed BWMGP stands at 52.28%. Notably, this factor demon-
strates a linear decrease up to Mode (IV), but an increment of
roughly 1.72% is observed in Mode (VI) compared with Mode
(IV), indicating an enhancement in the system’s environmen-
tal performance through integration. In a comparative view, the
exergy sustainability factor and levelized total emitted carbon for
the BWMGP in Mode (VI), in relation to a system coupled with
a BC (Mode (I)), exhibit reductions (improvements) of ∼31.97%
and 76.43%, respectively.

Figure 4. The depiction of the exergy sustainability factor and levelized total
emitted carbon for the BWMGP across various stages of completion and unit
integration.

By pinpointing and optimizing the thermodynamic perfor-
mance of such components, the overall efficacy of the energy
conversion process can be elevated. The influence of each
BWMGP’s unit on the destroyed exergy is graphically represented
in Figure 5. It is evident that the digestion and gasification (Dg
and Ga) of biomass contribute predominantly to the BWMGP’s
exergy destruction, accounting for around 50% of the total
destroyed exergy. These cycles involve three main components:
a heat exchanger, a digester and a gasifier, with the gasifier
alone responsible for ∼39% of the total destroyed exergy.
Furthermore, the solar farm, despite being a vast energy reservoir,
contributes over 25.8% of the total destroyed exergy due to the
limited efficiency of the collectors in converting solar energy
to heat. While these renewable energy-based units have high
destroyed exergy values, their deployment substantially curtails
environmental repercussions.

Financial projections indicate that the total capital cost for the
proposed BWMGP is ∼2165.4 × 103 $ per year. Figure 6 delin-
eates the financial contributions of each BWMGP’s unit, high-
lighting that the solar farm, along with RC and ORC units, bear
the brunt of the initial investment, cumulatively surpassing 72.8%
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Figure 5. The influence of each BWMGP’s unit on the destroyed exergy.

Figure 6. The financial contributions of each BWMGP’s unit.

of the project’s total initial outlay. The substantial investment in
Rankine cycle and ORC units is principally due to the high tur-
bines capitals. Balancing these financial aspects is crucial, particu-
larly as nascent technologies typically demand higher investment.
Consequently, the LFR and biomass-driven cycle incur relatively
steep capital costs. However, a growing inclination toward renew-
able energy and technological advancements may diminish these
costs over time.

The fuel Dg and Ga processes, along with the LFR, constitute
∼63% of the project’s total exergy destruction cost rates. The
exergoeconomic assessment further reveals that the condenser
embedded in the second ORC system and the integrated heat
exchanger in the cooling system possess high fk values than other
components. This underscores that capital investments in these
components are substantial relative to their exergy destruction
cost rates. Economically, opting for components with lower costs
can enhance the project’s financial performance. The calculated

Figure 7. A comparison of the total products unit cost value with those docu-
mented in literature for analogous projects: Habibollahzade et al. [71], Wang
et al. [72], Ren et al. [73], Wang et al. [74], Habibollahzade et al. [75], and Xu
et al. [76].

total products unit cost of the proposed plant stands at 0.05219 $
per kWh, a pivotal metric in the exergoeconomic/cost assessment
of the plant. A comparison of this value with those documented in
literature for analogous projects is presented in Figure 7, affirm-
ing the proposed project’s superior cost advantage in producing
divers products relative to many similar endeavors documented
in scholarly publications. Additionally, the unit cost of hydrogen
production in the proposed plant was characterized at 0.05029 $
per kWh, a critical indicator in appraising hydrogen production
methodologies (see Table 3).

Besides its commendable thermodynamic and cost-efficiency,
a novel energy project such as the presented BWMGP must also
exhibit a capacity to diminish environmental impacts. Pertinent to
this, the environmental analysis conducted reveals that the LTE-
CO2 value for the BWMGP stands at ∼0.2145 kg per kWh. This
metric has undergone a comparative analysis with similar studies
to gauge the environmental efficacy of the BWMGP. Therefore,
reducing the carbon footprint (especially in urban societies) is of
great importance [80, 81].

4.3. Parametric study results
The performance of the BWMGP is susceptible to variations
in several independent parameters, including the input sewage
sludge, inlet air temperature and relative humidity. The current
study delves into how alterations in these parameters influence
the multigeneration system’s performance. Notably, the input
biomass rate can significantly impact both the products outputs
and the system’s thermodynamic behavior. Figure 8 illustrates the
repercussions of varying the input biomass rate on the BWMGP’s
functionality. An uptick in this flow rate bolsters the capture of
biogas and syngas, thereby enhancing the outputs of electricity
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Table 3. A comparison of the hydrogen unit cost with those documented in literature for analogous
projects

Ref. Plant type Input energy Hydrogen unit
cost ($/kWh)

This work Multigeneration plant Bio-waste and Solar 0.0498
[74] Hybrid system Biomass and Geothermal 0.2460
[77] Integrated energy system Flue gas 2.43
[78] Multigeneration system Biomass and Solar 0.1618
[79] Polygeneration system Ground source and Biomass 0.0734

(a)

(b)

Figure 8. The repercussions of varying the input biomass rate on the BWMGP’s
functionality.

production units, WGSHRU and the heating generation unit due
to an increase in received enthalpy.

In the examined range, as depicted in Figure 8b, an approx-
imate 1.28% enhancement in energy efficiency was observed.
Conversely, a surge in the sewage sludge flow rate instigates a
decline in exergy efficiency. This phenomenon occurs because the
rate of increase in the input exergy outpaces that of the output
ones, resulting in diminished exergetic efficiency. Specifically, an

(a)

(b)

Figure 9. How the freshwater output of the BWMGP fluctuates with changes in
the relative humidity and temperature of the inlet air (the AWHU).

escalation in the input biomass from 25 × 103 to 25 × 103 kg/h
led to a decrease in exergy efficiency by roughly 2.3%. However,
channeling more biomass to the plant is shown to bolster environ-
mental impacts by lowering the LTE-CO2. The improvement is
attributed to the augmented availability of biomass fuel within the
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cycle, which escalates the flowed energy rate to bottoming units
and concurrently curtails gas emissions into the atmosphere.

Furthermore, Figure 9 examines how the freshwater output of
the BWMGP fluctuates with changes in the relative humidity and
temperature of the inlet air (the AWHU). An increase in both
parameters is shown to elevate the water production rate. As the
temperature of the inlet air rises, so does the H2O dew point,
thereby enhancing the freshwater output. Moreover, augmenting
the relative humidity (while maintaining a fixed temperature of
inlet air) increases the H2O density and, in turn, elevates the moist
air dew point, culminating in an improved water production
rate. Specifically, increasing the relative humidity from 40% to
80% results in an approximate 4.5-fold increase in the freshwater
output, signifying a substantial enhancement.

5. CONCLUSIONS
The present paper developed a new bio-waste-based multigener-
ation plant that incorporates a solar farm which was introduced
under the generation of diverse products such as electric power,
freshwater, heat and hydrogen gas. The proposed MGP harnessed
syngas and biogas from gasification and anaerobic digestion units,
sequentially. Moreover, the production of water and hydrogen
energy involved the AWHU and water/gas shift reaction ones.
Additionally, a significant portion of heating capacity and electric-
ity was derived from a waste heat recovery system, contributing to
environmental conservation by minimizing waste discharge. The
generation of green hydrogen via a BWMGP-based water/gas shift
reaction presents a promising avenue for reducing environmental
harm. The performance of this energy system was extensively
assessed from thermodynamic, financial and environmental
perspectives. The proposed plant is capable of producing an
estimated 17 920 kW of electric power, 3207.6 kg/h of hydrogen
energy and 5.14 × 10−3 L/s of freshwater. Under these design
conditions, the energy and exergy efficiencies of the system were
determined to be 35.76% and 40.49%, respectively. Additionally,
the exergy sustainability factor, the levelized total emitted carbon
dioxide and the unit cost of total products were characterized
to be 52.28%, 0.2145 kg per kWh and 0.05219 $ per kWh,
respectively.

In a comparative view, the exergy sustainability factor and
levelized total emitted carbon for the BWMGP, in relation to a
system coupled with a BC, exhibit reductions (improvements) of
∼31.97% and 76.43%, respectively. Economically, it may be more
feasible to use different processes’ waste heat for the gasification
process. Yet, from an environmental perspective and consider-
ing the limitations of fossil fuels, sourcing thermal energy from
renewable resources, particularly solar energy, is the preferable
approach.
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