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Abstract 

Numerous research studies have been carried out on nano-structures regarding their potential 

applications in drug delivery for treating cancers. Within the current work, the procarbazine (PB) 

drug delivery ability of a pure ZnO nanotube (PZnO-NT) and X-doped (X= Al, Ge, and In) ZnO-

NT is inspected through DFT computations. The results demonstrates that PZnO-NT isn't suitable 

for the PB drug delivery. We showed that doping the Al, Ge, and In atoms into the ZnO-NT 

structure changes the adsorption energy (AdE) of PB from -6.9 to -26.4, -28.7, and -31.5 kcal/mol, 

respectively. Moreover, there is a substantial amount of charge transfer from PB to the doped ZnO-

NT based on the natural bond orbital analysis. Using water solvent changes the AdE of the drug 

on the In-doped ZnO-NT from -31.5 to -29.8 kcal/mol. Hence, based on the computations 

undertaken within this work, the X-doped ZnO-NT can be utilized as a suitable PB carrier.    

Keywords: ZnO nanotube, Procarbazine drug, Drug delivery, DFT 
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1. Introduction 

One of the commonly used anti-cancer medications for the treatment of cancer is procarbazine 

(PB). Moreover, it is one of the cytotoxic chemotherapeutic drugs used for the treatment of 

Hodgkin's lymphoma and most brain-related cancers [1]. Being on the WHO list of essential 

medicines, PB was verified in 1969 for the first time [2-6]. PB is usually taken by mouth. Low 

blood cell counts, nausea, fatigue, and depression are the common side effects associated with PB 

[7, 8].  It is possible to use drug delivery systems (DDSs) in order to overcome such drawbacks 

[9]. DDSs have enjoyed considerable attention owing to their significant in drug delivery to target 

cells [10]. However, low drug loading efficiency, high toxicity, and immunogenicity are some of 

the major drawbacks to many of these systems [11, 12]. Researchers have investigated nanocarriers 

in order to correct the defects in anti-cancer drugs such as lack of selectivity, severe toxicity, low 

water solubility, and severe side effects [13-16]. 

Nowadays, nanotechnology is helping to significantly advance and revolutionize numerous 

technology and industry sectors, including information technology, food safety, environmental 

science [17-22], transportation, medicine, and energy [23-26]. Many research groups and scientists 

have found that one-dimensional (1D) nanostructures are encouraging DDSs for many drugs [27]. 

The most widely employed 1D nanostructures as DDSs are carbon nanotubes (CNTs) [28]. 

Nonetheless, many chemicals have a weak interaction with pure CNTs. This makes it almost 

impossible to employ CNTs as ideal DDSs [29, 30]. So, methods such as doping of impurities, 

chemical functionalization and generation of structural defects were adopted to resolve the above-

mentioned problem [31-34]. Furthermore, impurity atoms such as Zn or O have been substituted 

for C atoms in diverse C-like nanotubes [35, 36]. One of the most commonly used nano-structures 

is ZnO nanotube (ZnO-NT), which has been successfully synthesized [37]. The ZnO-NT has a 
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large bandgap and polar Zn-O bonds, demonstrating its potential application in semiconductor-

based DDSs. There are numerous studies on the interaction between ZnO-NT and different 

chemical agents. A pure ZnO-NT (PZnO-NT) cannot be considered as a suitable DDS in most 

cases because its stability is high and its tendency to have a reaction with different chemicals is 

less. Nonetheless, manipulating the structure of nanomaterials have been shown to be effective in 

boosting their reactivity to different chemicals [38, 39]. Here, density functional theory (DFT) 

computations are undertaken to investigate the interaction between PB and PZnO-NT, and X-

doped (X = Al, Ge, and In) ZnO-NTs (X@ZnO-NTs) to find a DDS.  

2. Computational details 

In order to precisely describe the molecular properties of nanostructures, one of the commonly 

used density functionals is B3LYP. Nevertheless, estimation of dispersion interactions is one of 

its main drawbacks. Hence, we assessed the dispersion forces by including the Grimme’s “D” [40]. 

The basis set (BS) utilized in this study is 6-31++G** (d) and the software used to undertake the 

computations is GAMESS [41]. The LANL2DZ BS is applied for the transition metals [42]. 

Moreover, the GaussSum program is used for the drawing of density-of-states (DOS) diagrams 

[43]. Based on the previous studies, B3LYP is one of the common functionals used to describe 

nanostructures due to its high accuracy [44, 45]. We computed the adsorption or adhesion energy 

(AdE) related to a PB drug on the nanotube surface through Eq. 1: 

AdE = E(PB/ZnO-NT) – E(PB) – E(ZnO-NT) + EBSSE     (1) 

where E(PB/ZnO-NT) represents the energy of the ZnO-NT onto which a PB molecule was 

adhered. E(PB) is the energy of PB. E(ZnO-NT) is the energy of the pure ZnO-NT. EBSSE has been 

computed by adopting the counterpoise method for all interactions [46]. The harmonics have been 
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estimated to verify that all geometries have positive frequencies. Eq. 2 was used to estimate the 

bandgap between the HOMO and the LUMO: 

Eg = ELUMO-EHOMO          (2) 

where ELUMO and EHOMO, respectively, are the energies of the lowest unoccupied and the highest 

occupied molecular orbitals. 

3. Results and discussions 

3.1. The characteristics of the nanotube and PB  

The PB adhesion onto the nanotube surface (Fig. 1) was examined by choosing a ZnO-NT model 

(36 Zn and 36 O atoms). ZnO-NTs have been previously employed to adsorb various chemicals 

such as NO, N2O2, CO2, CO, H2O2, N2O, and NH3 [47-50]. Moreover, the predicted diameter of 

ZnO-NT and the Zn-O bond length have been 8.81, and 1.92 Å, respectively, which were similar 

to those in experimental studies, i.e., 1.92 Å for Zn-O bond length [47]. According to the DOS 

diagram in Fig. 1, the LUMO energy is -2.54 and the energy of the HOMO is -6.36 eV for ZnO-

NT (Table 1). So, the energy gap is around 3.82 eV. According to Fig. 2, there are several 

functional groups on the hexagonal ring of PB. We observed an HOMO profile within the PB 

structure, a site which was suitable for attacking the Zn atoms of ZnO-NT (Fig. 2). 

3.2. The interaction between PZnO-NT and PB 

The initial stage in DDSs is the adhesion of a drug to a carrier. We explored the PB adhesion on 

the PZnO-NT. The adhesion of PB on PZnO-NT is examined by placing a PB molecule at different 

sites (i.e., over Zn or O atoms, over a hexagon center and over the bridge of bonds). The PB was 

positioned on the PZnO-NT perpendicularly or in a parallel manner. According to Fig. 3, after the 
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initial geometry optimization, three local minima are predicted. The adhesion energy values of all 

complexes (CMPLs, Table 1) revealed that the PB adhesion to the ZnO-NT is weak and AdE 

ranges from -5.2 to -6.9 kcal/mol. 

According to Fig. 3, in CMPL T (the CMPL with most stability), PB has a perpendicular 

interaction with the ZnO-NT surface and the distance is 3.76 Å for one O atom, and adhesion 

energy is -6.9 kcal/mol. As shown, PB somehow shared the O lone pairs with the Zn atoms. The 

NBO charge transfer from PB to the nanotube was 0.09 |e|, indicating the physical adhesion of PB 

to the ZnO-NT. There was a decrease in the bandgap from 2.82 eV in the PZnO-NT to 3.50 eV in 

CMPL T. The data for other CMPLs are provided in Table 1 and Fig. 3. The more stability of the 

CMPL T than another CMPLs can be ascribed to the HOMO of PB which was chiefly located on 

the O atom. As provided in Table 1, not any appreciable change occurred in the electronic attributes 

of ZnO-NT following the adhesion of PB. In addition to this, the less negative adhesion energy 

values, the very low adhesion capacity of ZnO-NT and the weakness of the interaction. Hence, the 

possibility of using the pure ZnO-NT as a proper nanocarrier for PB is low. The ZnO-NT was 

doped with the X atom to resolve the problem and boost the adhesion capacity and the interaction 

strength. 

3.4. X-doping in the ZnO-NT structure 

In order to boost the low reactivity of ZnO-NT towards PB, an X atom was substituted for O (NT 

E) and Zn atoms (NT F) in the ZnO-NT. Then, its impact was inspected on the electronic attributes 

and the geometric structure (GS) of the ZnO-NT (Fig. 4). The X atom caused a disruption in the 

ZnO-NT structure because the size of X atom is larger than the size of Zn and O atoms. This caused 

the X atom to project out of the surface of the ZnO-NT. 
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We inspect the stability of X-doped ZnO-NT (X@ZnO-NT) by computing the standard 

enthalpy of formation (ΔfH0). Subtracting the deliberate atomization energy (ΣD0) from the 

separated atoms’ known enthalpy of formation yielded the theoretical enthalpy of formation at 298 

K. For any X@ZnO-NT, ΔfH0 at 298 K for one atom was given by [51]: 

ΔfH0 (X@ZnO-NT) = ΔfH0 (X) + r ΔfH0 (Zn) + t ΔfH0 (O) - ΣD0    (3) 

Here, r is the number of Zn atoms and t is the number of O. The estimated ΔfH0 for Al, Ge, and In 

replaced instead of O atom in ZnO-NT, respectively, was -79.5, -82.4, and -97.1 kcal/mol.  ΔfH0 

for Al, Ge, and In replaced instead of Zn atom in ZnO-NT, respectively, was -84.2, -91.3, -100.3 

kcal/mol. In conclusion, NT F was thermodynamically more stable than NT E. Equation 4 was 

used to compute the standard Gibbs free energy of formation (ΔfG0) for these two NTs in order to 

understand the entropic effect on their stability: 

ΔfG0 (In@ZnO-NT, 298 K) = ΔfH0 (In@ZnO-NT, 298 K) - 298 ΔS    (4) 

Here, ΔS is the change in entropy. The estimated ΔfG0 for NTs E and F (In@ZnO-NT), 

respectively, was -18.9 and -50.3 kcal/mol, respectively. Here, the negative values demonstrate 

that the formation of In@ZnO-NT from the atoms is favorable thermodynamically, particularly in 

the NT F, in which a Zn atom was replaced by an X atom. The electron transfer from O atoms to 

the metal atoms could be the possible reason for the greater stability of NT F than NT E. Thus, 

NT F was selected to see how PB was adsorbed. The length of Al-O, Ge-O, and In-O bonds are 

about 2.95, 3.08, and 3.34 Å, respectively, in NT F. These bonds were are longer compared to Zn-

O bonds. Doping the X atom appreciably reduced the bandgap of ZnO-NT (see Table 2) thanks to 

the appreciable change in the HOMO to lower energies following X-doping. After its doping, the 

X@ZnO-NT changed into a p-type semiconductor. 
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Different orientations were taken into account to place a PB above the X atom to inspect 

the interaction between PB and the X@ZnO-NT (NT F). Following the optimization of structures, 

one of the orientations was a local minimum, namely; PB/X@ZnO-NT (Fig.5). In this CML, the 

PB was placed at the top of the X atom with the bond length of 3.11, 3.03, and 2.92 Å for PB/Al, 

Ge, In@ZnO-NT, respectively. According to the NBO analysis, the partial positive charge of Al, 

Ge, and In was 0.64, 0.67, and 0.73 |e|, respectively. As a result, the PB could be adhered onto the 

X atom from the O atom PB (HOMO head) (Fig. 2). For PB/Al, Ge, In@ZnO-NT, the AdE is -

26.4, -28.7, and -31.5 kcal/mol, respectively. Based on the results, doping the X atom led to an 

appreciable increase in the reactivity of the ZnO-NT toward the PB in comparison with the PZnO-

NT. Electronic property analysis was carried out to verify this.  

According to Table 2, a change was observed in the electronic attributes of the X@ZnO-

NT following the adhesion of PB. The NBO charge transfer of about 0.26, 0.31, and 0.37 |e| 

occurred from the drug to the Al, Ge, and In, respectively. There was substantial destabilization in 

the HOMO level of X@ZnO-NT in the range of 27 to 34% following the adhesion of PB (see 

Table 2, and Fig. 6 for In@ZnO-NT). This substantial destabilization could be due to the 

nucleophilic nature of PB attacking the HOMO of the X@ZnO-NT (Fig. 7), which led to a 

substantial change in its energy. Nonetheless, modifying the electronic attributes of a material is 

one of the effective ways for DDSs and electronically harmless adhesion processed are considered 

ideal.  

3.5. The influence of solvent on the adhesion 

The solute-solvent interactions are responsible for the significant changes in the chemical and 

physical characteristics of the solute in going from gas phase to solvent phase [52-54]. Here, the 

influence of the H2O solvent (HS) on the adhesion of PB to the In@ZnO-NT (for instance) was 
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inspected through the PCM [55]. For this purpose, the structures of PB, In@ZnO-NT, and CMP 

of PB/In@ZnO-NT were reoptimized in the HS. The findings revealed that the adhesion got weak 

and a change was observed in adhesion energy from -31.5 to -29.8 kcal/mol. Thus, it could be 

expressed as Eq. 3:  

ΔEsol-gas = AdE (HS) - AdE (gaseous phase) = 1.7 kcal/mol      (3) 

here ΔEsol-gas denotes the differences between the adhesion energy of PB in the gaseous phase (G-

P) and in the HS. ∆Esol (energy of solvation) of PB, In@ZnO-NT, and PB/In@ZnO-NT CMPs was 

calculated using Eq. 4:  

∆Esol = Esol - Egas           (4)  

Here, the energies of a species in the G-P and in the HS and are represented by Egas and Esol, 

respectively. The ∆Esol of In@ZnO-NT, PB, and PB/In@ZnO-NT, respectively, are -11.1, -6.1, 

and -12.2 kcal/mol, which demonstrate that the sum of Esol of In@ZnO-NT and PB was more 

negative than the Esol of PB/In@ZnO-NT. Indeed, In@ZnO-NT and PB were highly polar with an 

electric dipole moment, which made them more soluble in the polar HS. Hence, H2O molecules 

surrounded PB and In@ZnO-NT forcefully, thus, preventing their interactions. Unlike in the GP, 

there was a slight change in the bandgap of In@ZnO-NT following its interaction with PB in the 

HS (around -0.09 eV). So, a negligible decrease was observed in the sensing response of In@ZnO-

NT to PB in the HS. 

3.6. The release of PB 

The X@ZnO-NT is ideal for the adhesion of PB, which is the most pivotal step in DDSs. However, 

one of the challenges in DDSs is the release of drug from a carrier in target cells. The pH of normal 

cells is in fact more than the pH of tumor cells, showing that the environment of tissues has a pH 
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below 6 [56]. The influence of pH on the CMP (with most stability) between the In@ZnO-NT (for 

example) and PB was examined. We assume that H+ species tend to attach to the nucleophilic 

heads of PB. So, we protonated the O atom of PB and performed the optimization computations. 

As a result, the AdE changes in the acid milieu from -31.5 to -20.2 kcal/mol and the distance 

between PB and the In@ZnO-NT increases to 3.54 Å. Also, according to Fig. 8, the interaction 

nature changes from a covalent bond (CB) to the H-bond (HB), which separates PB from the carrier 

via protonation. The protonated PB could not attach to the carrier, and it had to be released. 

4. Conclusions 

The potential use of PZnO-NT and X@ZnO-NT as drug carriers was investigated by examining 

the adhesion of PB to their surface. The interaction of PZnO-NT with PB was weak. However, 

after doping the X atom, the O atom of PB interacted with the X atom of the Al, In and Ge with 

AdE of about -26.4, and -31.5 and -28.7 kcal/mol, respectively. The mechanism of interaction 

changed from CB in blood cells to HB in cancerous cells, which could separate PB from In@ZnO-

NT in cancerous cells with a low pH via protonation. The HB energy was very low, which was 

about -20.2 kcal/mol. The PCM was used to examine the solvent effect on the drug AdE on the 

In@ZnO-NT, indicating that it is about -29.8 kcal/mol. Overall, the results suggested the potential 

use of X@ZnO-NT (especially In@ZnO-NT) as an encouraging nanocarrier for PB delivery.   
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Figure captions 

Figure 1. Optimized structure of the ZnO nanotube (ZnO-NT) and its density of states (DOS). 

Distance is in Å. 

Figure 2. Optimized structure of procarbazine (PB) drug and its HOMO profile. 

Figure 3. Optimized structures of PB/ZnO-NT complexes. Distances are in Å. 

Figure 4. Optimized structures of different X atom-doped ZnO-NT (X@ZnO-NT). 

Figure 5. Optimized structures of PB/Al, Ge, and In@ZnO-NT complexes. Distances are in Å. 

Figure 6. Partial DOS of the most stable PB/In@ZnO-NT complex. 

Figure 7. The HOMO profile of the most stable PB/In@ZnO-NT complex. 

Figure 8. The optimized structure of protonated PB and In@ZnO-NT, showing separation from 

each other in the acidic environment. Distance is in Å.  
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Table 1. The calculated adsorption energy (AdE) in kcal/mol, HOMO, LUMO energies, and 

HOMO-LUMO energy gap (Eg) of bare ZnO nanotube (ZnO-NT) and the procarbazine (PB) and 

ZnO-NT complexes in eV. Q is the charge on the molecules. 

Q(e) ΔEg(%) Eg ELUMO EHOMO AdE Structure 

- - 3.82 -2.54 -6.36 - ZnO-NT 

0.06 -5.8 3.60 -2.54 -6.14 -5.2 R 

0.07 -6.8 3.56 -2.53 -6.09 -6.1 S 

0.09 -8.4 3.50 -2.52 -6.02 -6.9 T 
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Table 2. The calculated adsorption energy (AdE) kcal/mol, HOMO, LUMO energies, and HOMO-

LUMO energy gap (Eg) of X-doped ZnO-NT (X = Al, Ge, and In and X@ZnO-NT) and the PB 

complexes in eV. Q is the charge on the molecules. 

 

 

 

 

 

 

 

  

Q(e) ΔEg(%) Eg ELUMO EHOMO AdE Structure 

- - 2.64 -2.51 -5.15 - Al@ZnO-NT 

0.26 -27.3 1.92 -2.49 -4.41 -26.4 PB/Al@ZnO-NT 

-  2.60 -2.52 -5.12 - Ge@ZnO-NT 

0.31 -31.2 1.79 -2.49 -4.28 -28.7 PB/Ge@ZnO-NT 

-  2.60 -2.48 -5.08 - In@ZnO-NT 

0.37 -34.2 1.71 -2.45 -4.16 -31.5 PB/In@ZnO-NT 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 

 

 

  

Jo
urn

al 
Pre-

pro
of



26 
 

Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8.  
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