
Journal of Molecular Liquids 381 (2023) 121805

Available online 7 April 2023
0167-7322/© 2023 Elsevier B.V. All rights reserved.

An advanced computational method for studying drug nanonization using 
green supercritical-based processing for improvement of pharmaceutical 
bioavailability in aqueous media 

Hua Xiao Li a, Uday Abdul-Reda Hussein b, Ibrahem Waleed c, Salah Hassan Zain Al-Abdeen d, 
Farag M.A. Altalbawy e, Zainab Hussein Adhab f, Ahmed Faisal g, Mohammad Y. Alshahrani h, 
Haider Kamil Zaidan i, Muath Suliman j, Xiang Ben Hu a,* 

a Shaanxi Institute of International Trade & Commerce, Xi’an, Shaanxi 712000, China 
b College of Pharmacy, University of Al-Ameed, Iraq 
c Medical Technical College, Al-Farahidi University, Iraq 
d Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq 
e National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt 
f Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq 
g Department of Pharmacy, Al-Noor University College, Nineveh, Iraq 
h Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia 
i Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq 
j Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia   

A R T I C L E  I N F O   

Keywords: 
Drug solubility 
Nanomedicine 
Random Forest 
Extra Tree 
KNN 

A B S T R A C T   

In this study, we implemented and compared various non-mechanistic based models for prediction of drug 
solubility in supercritical solvent. The data were collected from references and the models were built considering 
various operational circumstances. Small data sets, like the solubility data used in this study, have always been 
one of the challenges for modeling in machine learning method. In this study, in order to solve the regression 
problem related to the solubility of drugs, which includes 32 laboratory data, we implemented and studied 
models that are naturally compatible with very small data like solubility data of drugs in solvents. These models 
included Random Forest (RF), KNN and Extra Tree (ET). After obtaining the best settings for each model, their 
final results were compared in terms of accuracy for predicting drug solubility. The ET model had the best result 
with a score of 0.9999 on the R2 criterion. Random forests with 0.978 and KNN with 0.972 also had acceptable 
regression results. Finally, the trained model was used to display and evaluate the effect of input parameters like 
pressure and temperature on drug solubility to understand the process.   

1. Introduction 

Process understanding and predictive models are of great importance 
for process development in various industries such as pharmaceuticals 
and food. The models can be implemented and trained at various scales 
such as molecular level, microscopic, mesoscale, macroscale, and plant 
scale. The model’s application and type depend on the process and usage 
of model for the process [1–3]. For pharmaceutical area, so far different 
models at disparate scales have been developed and successfully 
implemented. For solid oral dosage formulation manufacturing, crys-
tallization is the key step, and the primary models for crystallization step 

is mass transfer, heat transfer, and population balance model (PBM) 
[4,5]. These models need to be implemented for the process provided 
that a numerical scheme has been developed and applied. Different 
numerical schemes such as finite difference, finite element, and finite 
volume can be applied for numerical solution of process governing 
equations. 

Beside mechanistic models that have been developed and imple-
mented for pharmaceutical processing, the models based on artificial 
intelligence can be used for this application. Artificial neural network 
(ANN) model has been successfully implemented for downstream pro-
cessing of pharmaceutical processing such as granulation and tablet 
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release [6,7]. These artificial intelligence-based models have shown 
much better performance compared to mechanistic models in terms of 
fitting accuracy, however these models are applicable when a large 
amount of data from process is available [8,9]. Indeed, these models are 
versatile and would be viable to be implemented for pharmaceutical 
processing for process development. 

In pharmaceutical processing, production of drug solid particles at 
submicron size is of great importance for improving drug solubility, and 
consequently drug efficacy. Production of drugs with high efficacy can 
improve patient compliance by reducing the drugs side effects. One of 
the techniques that can be used for production of nanomedicine is su-
percritical based processing which is also considered as green technol-
ogy for preparation of nanodrugs [10]. In this new green technique, 
measuring and correlation of solubility data is the key step for further 
process development [11,12]. Prediction of drug solubility can reduce 
the processing costs as well as analytical costs and time. A model with 
extrapolative nature can be more applicable for this area. AI based 
models can be used to predict solubility and optimize the process. For 
development of these predictive of drugs solubility in the solvent, the 
data of solubility versus temperature and pressure are required [13,14]. 

The primary aim for this work is to design and implement a 
comprehensive methodology for prediction of drug solubility in a su-
percritical solvent in which the drug model is chloroquine. Herein, the 
size of input data is small and therefore we need to select the necessary 
models for forecasting accurately and in proportion to these sizes. 
Therefore, three linear regression models including random forest (RF), 
k-nearest Neighbors (KNN), and extreme random tree (ET) are candi-
dates to do so. This is because data with smaller dimensions may have a 
higher risk of over-fitting, and we selected these models to fit the solu-
bility data for the chloroquine drug in supercritical CO2. In addition, we 
need to specify the Hyper-parameters of each machine learning model in 
the best possible way. Therefore, one of the most important steps of this 
research is to test the data with different configurations and its effects 
are discussed accordingly. Solubility data are gathered from the litera-
ture and used to fit and validate models. 

2. Experimental conditions and data 

In this study, we used similar experimental data used in [15] to fit 
and correlate the machine learning models. However, in order to use 
such data and that the larger the change interval of one of the data is not 
involved in its greater impact on the final output, the data mentioned in 
the next section need to be scaled. This helps us build a better model and 
has no effect on testing and learning. The data are selected for the sol-
ubility of chloroquine as the model drug in the temperature between 308 
and 338 K, and the pressure between 120 and 400 bar, as listed in 
Table 1. The detailed procedure on the solubility measurement and 
operational conditions can be found in [15]. 

3. Modeling of process 

In this research, we have a regression problem with two inputs and 
one output: Temperature and Pressure and chloroquine solubility (Y) as 

our only output, as given in Table 1 obtained from [15]. 
To obtain an accurate model for predicting the amount of output 

mentioned above, we have used three different models commonly used 
on small data sets and compared the results of simulation in order to find 
the best fitting model for the solubility data. These models included: K 
Nearest Neighbors (KNN), Extremely Randomized Tree (ET), and 
Random Forest (RF). 

3.1. K Nearest Neighbors (KNN) technique 

K-nearest Neighbors (KNN) is a technique for supervised classifica-
tion and regression that finds particular use in situations in which there 
is minimal previous knowledge regarding the actual distribution of the 
data [16]. So, this algorithm can be used for small dataset like our 
dataset with 32 rows for the solubility data as listed in Table 1. K-NN is 
an instance-based learning or lazy learning technique in which the 
function is approximated (not calculated accurately) locally and all 
computation is postponed until final regression or classification. The k- 
NN method is a basic ML algorithm that can be used for data prediction 
[17–19]. 

Consider Xi as an input vector with p features 
(
xi1,⋯xip

)
, between 

any two samples,xi and xl(l = 1, 2,⋯, n) The Euclidean distance is 
calculated as following equation shows: 

d(X1,Xl) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi1 − xl1)
2
+ ⋯ +

(
xip − xlp

)2
√

(1)  

and the corresponding neighborhood to it as: 

Ri = {X ∈ Rp : d(X,Xi) ≤: d(X,Xm), ∀i ∕= m } (2) 

Here, each Ri is the clusters of elements with output m, and the set of 
data points that belong to it is X. The estimated value of the new instance 
x is the mean value of the k nearest training instances for regression 
tasks. 

3.2. Random Forest (RF) and extreme Random tree (ET) 

These two methods are similar, and both are based on decision trees. 
In this section, we describe them and their differences. 

Random Forest is an ensemble tree-based (using decision tree as 
core) method for both classification and regression [20,21]. 

The Random Forest (RF) can be used to prevent overfitting in the 
decision tree. Each tree is trained by drawing a random subset of data 
from the full training set, and then constructing a decision tree in which 
each node makes a split based on a feature drawn at random from the 
entire feature set. Random forest training is very quick, even for large 
data sets with numerous attributes and tree instances, because each tree 
is trained separately from the others [22]. The generalization error is 
accurately approximated by the Random Forest technique, which pre-
vents overfitting [23]. 

The extreme random tree method was proposed by researchers in 
[24]. The extreme random tree built a series of “free-growing” regres-
sion tree sets using the traditional top-down method. Similar to the RF 
method, the ET method is also composed of multiple decision trees as 
core learner. The difference between ET and the random forest method 
is that the extreme random tree method gets the branching value 
completely at random to perform the regression tree branching, which is 
different from the random forest method. Also, each regression tree in 
the extreme random tree method uses all the training samples. 

3.3. Accuracy criteria of models 

We utilized three distinct criteria in order to make comparisons, 
determine which model was superior, and improve the accuracy of the 
final product. The computed value of the coefficient of determination 
based on the test data and the training data. The training phase makes 

Table 1 
Solubility data used in modeling [15].  

P (bar) T (K) 

308 318 328 338 

120 8.26 × 10− 5 4.26 × 10− 5 4.04 × 10− 5 1.64 × 10− 5 

160 1.33 × 10− 4 1.13 × 10− 4 7.35 × 10− 5 5.96 × 10− 5 

200 1.53 × 10− 4 1.76 × 10− 4 1.95 × 10− 4 2.22 × 10− 4 

240 2.11 × 10− 4 2.26 × 10− 4 2.33 × 10− 4 2.59 × 10− 4 

280 2.50 × 10− 4 3.05 × 10− − 4 3.45 × 10− 4 3.87 × 10− 4 

320 2.95 × 10− 4 3.78 × 10− 4 4.40 × 10− 4 5.02 × 10− 4 

360 3.28 × 10− 4 4.12 × 10− 4 5.21 × 10− 4 6.04 × 10− 4 

400 3.74 × 10− 4 4.55 × 10− 4 6.76 × 10− 4 8.92 × 10− 4  
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use of the remaining two thirds of the data after the test data has been 
taken up one third of the space in the total data set used for testing. The 
R2 score is calculated using Equation (3). 

R2 = 1 −
u
v

(3)  

where, 

u =
∑

i
(Qi − yi)

2 (4)  

v =
∑

i
(y − yi)

2 (5) 

The k-fold cross validation is the third requirement. K-fold is 
employed to ensure our final method has no overfitting issues. 

Table 2 
List of the accuracy of different configs of KNN model.  

K ¼ Number of 
neighbors 

weight 
function 

RMSE MSE MAE 

5 distance 2.35E− 05 5.52E− 10 1.99E− 05 
5 uniform 2.40E− 05 5.76E− 10 2.24E− 05 
4 distance 2.59E− 05 6.71E− 10 2.16E− 05 
7 distance 2.79E− 05 7.78E− 10 2.26E− 05 
6 distance 3.02E− 05 9.12E− 10 2.56E− 05 
4 uniform 3.10E− 05 9.61E− 10 2.63E− 05 
6 uniform 3.27E− 05 1.07E− 09 2.83E− 05 
7 uniform 3.13E− 05 9.77E− 10 2.45E− 05 
8 distance 3.10E− 05 9.63E− 10 2.41E− 05 
2 distance 3.94E− 05 1.55E− 09 3.03E− 05  

Fig. 1. RMSE and MAE for KNN model.  

Fig. 2. Evaluating R2 Score on KNN model.  
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Table 3 
Sample results of RF.  

Number of trees Max Depth R2 on Train RMSE MSE MAE Criterion 

7 17  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 11  0.98258 5.99E− 05 3.58E− 09 3.96E− − 05 mae 
7 15  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 7  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 9  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 19  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 13  0.98258 5.99E− 05 3.58E− 09 3.96E− 05 mae 
7 5  0.98173 6.02E− 05 3.63E− 09 3.99E− 05 mae 
5 7  0.97967 4.08E− 05 1.66E− 09 2.87E− 05 mse 
5 9  0.97967 4.08E− 05 1.66E− 09 2.87E− 05 mse  

Fig. 3. Variations of accuracy of RF with number of trees changes.  

Fig. 4. Variations of accuracy of RF with max depth changes.  
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Table 4 
The statistical analysis results on Extra Tree model.  

Number of trees Max Depth R2 on Train R2 on Test RMSE MSE MAE 

25 7 0.99996  0.98503 1.98E− 05 3.91E− 10 1.68E− 05 
25 8 0.99999  0.98455 1.99E− 05 3.94E− 10 1.64E− 05 
27 8 1  0.98453 1.98E− 05 3.93E− 10 1.65E− 05 
27 7 0.99996  0.98381 2.05E− 05 4.21E− 10 1.71E− 05 
29 8 1  0.98369 2.05E− 05 4.20E− 10 1.74E− 05 
35 8 1  0.983 2.09E− 05 4.38E− 10 1.75E− 05 
35 18 1  0.98291 2.10E− 05 4.40E− 10 1.78E− 05 
35 11 1  0.98291 2.10E− 05 4.40E− 10 1.78E− 05 
35 19 1  0.98291 2.10E− 05 4.40E− 10 1.78E− 05 
35 9 1  0.98291 2.10E− 05 4.40E− 10 1.78E− 05 
35 10 1  0.98291 2.10E− 05 4.40E− 10 1.78E− 05  

Fig. 5. Effect of No. of trees on fitting error.  

Fig. 6. Effect of Max Depth on fitting error.  
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3.4. Choosing the best Hyper-parameters 

Now, we need to find the best parameters for models to compare the 
results. For this aim, different values were tested with our data. For KNN 
we tried optimizing the K and weight function used in prediction. 
Table 2 shows an overview of the parameters of KNN. 

As it is clear from Figs. 1 and 2, according to all 4 criteria examined, 
the value of K = 5 is the optimal value for this model. Some of results for 
Random Forest are listed in Table 3. 

Also, in Fig. 3 the impact of changing the quantity of decision trees in 
Random Forest is shown. With both Fig. 3 and the table, we can find the 
best number of trees equal to 7. 

According to Fig. 4, increasing max depth decreases error rate up to 
7. But for more values, there is no effect on the error rate. So, we can 

Table 5 
Best Hyper Parameters for ET model.  

Number of trees Max Depth 

25 7  

Table 6 
Performance of Final Models.  

Model MSE RMSE MAE Train R2 

KNN 5.7588E− 10 2.3998E− 05 2.24460E− 05  0.9728 
Extra Tree 4.8572E− 10 2.2039E− 05 1.92493E− 05  0.99997 
Random Forest 4.9552E− 10 2.2260E− 05 1.66986E− 05  0.97801  

Fig. 7. Residuals with KNN.  

Fig. 8. Comparing Train prediction with true output (KNN Model).  
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choose the number of trees = 7 and max depth = 7 for the optimal 
random forest. 

For the ET model, more than 800 different configurations were 
tested. As we can see in Table 4, the R2 score in some cases are equal to 1 
and this shows that the model operates very accurately in the learning 
phase (see Figs. 5 and 6). This accurate model hyper parameters are 
shown in Table 5. 

4. Results and discussions 

According to last section, models with these hyperparameters are 
selected to solve our regression problem:  

• KNN (Number of neighbors = 5)  

• RF (Criterion = mae, N_estimators = 7, Max Depth = 7)  
• ET (Criterion = mae, N_estimators = 25, Max Depth = 7) 

Table 6 presents the findings obtained from the final models. Ac-
cording to this table we can now analyze these models in advance to 
evaluate their performance in predicting the drug solubility values. 

4.1. KNN results 

Final results for KNN with k = 5, it has 0.9728 score in R2 mea-
surement for fitting the solubility data. This fact shows that this model 
has a relatively good accuracy considering the size of the data set. The 
same can be deduced from Fig. 7. However, according to Figs. 8 and 9, in 
some cases the predicted result is significantly different from the value 

Fig. 9. Comparing Test prediction with true output (KNN Model).  

Fig. 10. Residuals with RF.  
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observed in the experimental data. 

4.2. RF results 

Same for Random Forest R2 score shows good accuracy, but 
comparing Figs. 10, 11, and 12 with the former subsection, we can see 
that the RF model is less suspected of over-fitting. 

4.3. ET results 

As we can see from Table 6, ET can obtain a model that goes through 
all the examples in the learning phase. This fact is quite clear in Figs. 13 
and 14. In addition, according to Fig. 15, we can be sure of the 

robustness of the model compared to outgoing input data. 
Therefore, the ET model with the parameters mentioned at the 

beginning of Section 4 can be considered the best model available for the 
problem raised in this research for correlating drug solubility data. 
Therefore, the predicted solubility values are plotted versus temperature 
and pressure which are shown in Fig. 16. Pressure, more than temper-
ature, is seen to significantly affect chloroquine solubility, which could 
be attributed to the compressible behavior of the solvent which is at 
supercritical state in this process for measuring the solubility. 

5. Conclusion 

In this investigation, we looked at the issue of solubility using three 

Fig. 11. Comparing Train prediction with true output (RF Model).  

Fig. 12. Comparing Test prediction with true output (RF Model).  
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different approaches to machine learning models that are naturally 
suitable for a limited data set. Data were gathered from a wide variety of 
published sources in order to determine the solubility of chloroquine in 
supercritical carbon dioxide as a solvent. In terms of accuracy and the 
impact of pressure and temperature on the solubility, the data and 
models were examined. After optimizing the hyper-parameters of each, 
we obtained a final model for them. The results of this study, for which 
more than 1000 different configurations have been tested, showed that 
with these methods we can increase the score of the learning and testing 
stage to 0.9999, which is an ideal model for the problem of interpreta-
tion. The model of ET indicated the best results in terms of fitting 

accuracy. 
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