Research Article # Chemical Review and Letters journal homepage: www.chemrevlett.com ISSN (online): 2645-4947 (print) 2676-7279 # DFT Investigation of Structure, stability, NBO charge on Titanium-Nitrogen Nanoheterofullerenes evolved from a small nanocage Iman Sabeeh Hasan¹, Alhussein Arkan Majhool², Mustafa Humam Sami³, Mohaned Adil⁴, Saripah Salbiah Syed Abdul Azziz⁵ ¹ Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq ² College of Applied Medical Sciences, University of Kerbala, Kerbala, Iraq ³ Department of Pharmacy, Al-Noor University College, Nineveh, Iraq ⁴ Medical technical college, Al-Farahidi University, Iraq ⁵ Chemistry Department, Faculty of Science and Mathematics, Sultan Idris Education University, 35900, Tanjong Malim, Perak, Malaysia #### ARTICLE INFO #### **ABSTRACT** Article history: Received 8 April 2023 Received in revised form 26 July 2023 Accepted 26 July 2023 Available online 26 October 2023 Keywords: Heterofullerene Heteroatom Stability NICS NBO In this DFT (density functional theory) approach, we are performed geometric and electronic properties of Ti-N hallow cages improved from C₂₀ i.e., C₂₀- $_{2n}Ti_{n}N_{n}$ (n = 1-8), at (U)B3LYP, (U)M062X, (U)B3PW91//6-311++G**, AUG-cc-pVTZ. Except for C₄Ti₈N₈, other structures are real minima and none deform as segregated open cage. Substituting causes different ΔE_{HOMO} LUMO values (the frontier molecular orbital energy separation) and C₁₈Ti₁N₁ is distinguished as the suitable insulated structure, while C₁₂Ti₄N₄ is considered as the proper conductive structure. There is good reliability among polarizability, and ionization potential with substituting Ti-N units. The NICS (0) shows aromaticity decreases as n increases. Due to eight Ti-N units in the symmetrical positions of C₄Ti₈N₈ cage, it shows dipole moment of 0.00 Debye, and the smallest charge of +0.526 on Ti. Considering the least Eads. | ; | -18.9 kcal/mol | ; and the greatest charge of +1.269 on titaniums of C₁₈Ti₁N₁, it is recommended for hydrogen storage. The NBO of C₁₈Ti₁N₁ points out higher intramolecular charge transfer (ICT) from donor orbitals to acceptor orbitals through the appropriate overlapping between $LP(1)_N \rightarrow$ $\pi^*_{C=C}$, $\pi_{C=C} \to \sigma^*_{C=Ti}$, $\pi_{C=C} \to \sigma^*_{C=Ti}$, $\sigma_{C=Ti} \to \pi^*_{C=C}$ and $LP(1)_N \to \sigma^*_{C=Ti}$ orbitals of $C_{18}Ti_1N_1$. ### 1. Introduction The C_{20} is comprising pentagons with great curvature. Due to interesting construction of this hollow cage, it has been subject of many theoretical surveys [1-7]. Initially, interaction of C_{20} with the lithium heteroatom does not give significant modification in the cage geometry. It is inspected to be more reactive than it's bowl and ring analogue, even though the relative energy among these isomers is influenced by sophistication of the applied theoretical methods [1-7]. It is distinguished as the most stable twenty vertex polyhedral with the minimum energy amid the mathematically probable fullerenes. From an experimental point of view, this fullerene produced through stable C₂₀H₂₀ in gas phase [8].Furthermore, the synthesis and the doped nanosheets can be confirmed with some categorizations. Moreover, encapsulation metal-endohedral fullerenes such as Ti@C₂₈, Zr@C₂₈, and U@C28 are investigated via a bottom-up growth process [8-13]. The substituted aluminum and/or titanium heteroatoms stabilize the highly strained C_{20} , C₂₄, C₂₈ fullerenes via charge transfer (CT) from the electropositive dopant to carbon [14]. Regardless of Ti—decorated boron cages that B₃₈ and B₄₀ have been achieved as experimentally the first heterofullerene, H₂ storage of the designed transition metals at heptagon and hexagon rings of these structures have been surveyed through DFT [15]. * Corresponding author.; e-mail: shadaldlymy747@gmail.com https://doi.org/ <u>10.22034/CRL.2023.392371.1223</u> (CC) BY This work is licensed under Creative Commons license CC-BY 4.0 Experimental and theoretical inspections have revealed that Ti—clusters significantly improve H_2 storage [15]. Our enquiry further proofs theoretical insight into substituent effect of Ti—N units on C_{20} - $_{2n}Ti_nN_n$ structures, to respect which of them are suitable for H_2 storage (Figure 1). Fig. 1. The optimized C_{20} and its derivatives as well as their point groups, at B3LYP/AUG-cc-pVTZ. #### 2. Computational Methods The optimization is done for closed-shell multiplicity (n=0, 2, 4, 6, 8) at the restricted spin-symmetry methods and for opened-shell multiplicity (n=1, 3, 5, 7) at the unrestricted spin-symmetry methods using the GAMESS [16-18]. Harmonic frequencies are obtained to realize nature and ZPVE value [18]. The NBO [19], aromaticity [20], MEP as well as reactivity [21] calculations are individually achieved, at three methods. The reactivity is accomplished via $N = E_{\rm HOMO(Nu)} - E_{\rm HOMO(tetracyanoethylene)}$, $\omega = \mu^2 / 2\eta$, $\mu = (E_{\rm HOMO} + E_{\rm LUMO}) / 2$, $\eta = (E_{\rm LUMO} - E_{\rm HOMO}) / 2$, $\chi = -\mu$, $S = 1 / 2\eta$, and $\Delta N_{\rm max} = -\mu / \eta$. ## 3. Results and Discussion In the succeeding parts we will discuss substituted heteroatom effects by increasing the Ti—N units, however there are many other likely isomers but we are investigated eight of them. ## 3.1.Structural investigation The structures of studied molecules are explained in terms of bond distances close to the substituting elements. The C—C bond distances of C_{20} are around 1.44-1.54 Å (Tables 1 and 2) which insert amid the values of H_2C = CH_2 and H_3C — CH_3 (1.35 and 1.54 Å, respectively). **Table 1.** The bond lengths per Å, at B3LYP/AUG-cc-pVTZ. | Species | C=C | Ti-C | N-C | |--|-------------|-----------------|-----------------| | C ₂₀ | 1.444-1.537 | - | - | | C ₁₈ Ti ₁ N ₁ | 1.398-1.538 | 1.444 | 1.443 | | C ₁₆ Ti ₂ N ₂ | 1.410-1.523 | 2.006-
2.021 | 1.408-
1.432 | | $C_{14}Ti_3N_3$ | 1.397-1.501 | 1.877-
2.074 | 1.424-
1.491 | | C12Ti4N4 | 1.402-1.493 | 1.079-
2.080 | 1.395-
1.448 | | C10Ti5N5 | 1.402-1.523 | 1.587-
1.609 | 1.587-
1.609 | | C ₈ Ti ₆ N ₆ | 1.336-1.482 | 1.943-
2.165 | 1.355-
1.488 | | C ₆ Ti ₇ N ₇ | 1.408-1.414 | 2.117-
2.162 | 1.376-
1.419 | | C4Ti8N8 | 1.449 | - | 1.375 | **Table 2.** The bond lengths per Å, at B3LYP/AUG-cc-pVTZ. | Species | Ti-N | Ti–Ti | |--|-------------|-------------| | C ₂₀ | - | | | $C_{18}Ti_1N_1\\$ | 1.442 | - | | $C_{16}Ti_2N_2$ | 2.006-2.027 | 2.380 | | C ₁₄ Ti ₃ N ₃ | 1.953-1.984 | - | | $C_{12}Ti_4N_4$ | 2.041-2.065 | 2.305 | | $C_{10}Ti_5N_5$ | 1.674-1.697 | - | | $C_8Ti_6N_6$ | 1.882-2.031 | 2.502-2.775 | | C ₆ Ti ₇ N ₇ | 1.872-2.078 | 2.701-2.798 | | C ₄ Ti ₈ N ₈ | 1.873-2.028 | 2.360 | The considered Ti—C, and N—C bond lengths are expanded to approximately 1.77 - 2.61 Å which are followed with sum of covalent radii of the scrutinized atoms; C = 0.70 Å, Ti = 1.40 Å and N = 0.65 Å. Shrinking 0.11 Å in C=C bond length of heterofullerenes vs. C_{20} is attributed to dopants. The bond angles of C– \hat{C} –C (99.59° - 118.82°), C–Ti–C (37.03° - 91.73°), and C–N–C (98.74° - 113.96°) are changed vs. C– \hat{C} –C (103.99° to 111.31°) of pure C_{20} (Table 3). **Table 3.** The bond angles (in degree), at B3LYP/AUG-cc-pVTZ. | Species | C-C-C | C-Ti-C | C-N-C | |--|-------------------|------------------|-------------------| | C ₂₀ | 103.99-
111.31 | - | - | | C ₁₈ Ti ₁ N ₁ | 103.46-
117.93 | 85.79 | 101.64 | | $C_{16}Ti_2N_2$ | 99.59-
118.82 | - | 99.81-
99.94 | | C ₁₄ Ti ₃ N ₃ | 103.75-
132.89 | 83.81-
117.40 | 89.89-
105.85 | | C ₁₂ Ti ₄ N ₄ | 99.78-
114.38 | - | 98.74-
99.63 | | $C_{10}Ti_5N_5$ | 107.33-
108.77 | 38.92-
39.89 | - | | C8Ti6N6 | - | 37.03-
74.44 | 104.66-
113.96 | | C ₆ Ti ₇ N ₇ | - | 91.73 | 108.16 | | C ₄ Ti ₈ N ₈ | | - | - | These variations create pyramidalization on dopant sites; $\theta_C = 360$ - [(C–C–C) $_1$ + (C–C–C) $_2$ + (C–C–C) $_3$], $\theta_{Ti} = 360$ - [(C–Ti–C) $_1$ + (C–Ti–N) $_2$ + (N–Ti–C) $_3$] and $\theta_N = 360$ - [(C–N–C) $_1$ + (C–N–Ti) $_2$ + (Ti–N–C) $_3$ (Table 4) [22-25]. **Table 4.** The pyramidalization angles of θ_{Ti} , θ_{N} (in degree), at B3LYP/AUG-cc-pVTZ. The pyramidalization angle of $\textbf{C}_{\textbf{20}}$ is 31.623 - 42.254° . | Species | θ_{Ti} | $\theta_{ m N}$ | |--|---------------|-----------------| | C ₂₀ | 31.62-42.25 | - | | $C_{18}Ti_1N_1\\$ | 100.95 | 40.84 | | $C_{16}Ti_2N_2$ | 64.22 | 35.5 | | $C_{14}Ti_3N_3$ | 26.25-98.52 | 34.28-101.16 | | C ₁₂ Ti ₄ N ₄ | 72.33-123.25 | 32.06-49.44 | | $C_{10}Ti_5N_5$ | - | - | | C ₈ Ti ₆ N ₆ | - | 35.32-115.38 | | C ₆ Ti ₇ N ₇ | 23.39-71.26 | 40.86-92.14 | | C ₄ Ti ₈ N ₈ | 76.85 | 40.23 | Here, the substituting dopants of $C_{20-2n}Ti_nN_n$ species displays more pyramidalization vs. C_{20} , owing to their more tendency to accept sp^3 hybridization than sp^2 . The smallest vibrational frequency (v_{min}) analysis displays one negative frequency only for $C_4Ti_8N_8$ as transition state and positive frequencies for others as real minima (Table 5 and Figure 2). **Table 5.** The total energy, smallest vibrational frequency, polarizability, and polarity. | • | $E_{\text{tot}}^{\text{a, (b), c, [d]}}$ | v _{min} e / | h | h | |--|--|----------------------|--------------|--------------------| | Species | a.u. | cm ⁻¹ | <a>>p | μ^{b} | | C ₂₀ | -761.60234 | 82.23 | 187.27 | 0.00 | | C20 | (-761.18425) | 62.23 | 107.27 | 0.00 | | | -761.18350 | | | | | | [-761.67038] | | | | | | -1589.47147 | | | | | C18Ti1N1 | (-1589.11869) | 127.09 | 184.04 | 5.96 | | CISTIIIII | -1589.35354 | | | | | | [-1589.77347] | | | | | C16Ti2N2 | -2417.44789 | 104.94 | 243.27 | 5.95 | | C16 1 121 12 | (-2417.12013) | 104.54 | 243.27 | 3.73 | | | -2417.33158 | | | | | | [-2417.83232] | | | | | C14Ti3N3 | -3245.52935 | 137.84 | 250.89 | 5.64 | | C14 1 131 13 | (-3245.15983) | 137.04 | 230.07 | 3.04 | | | -3245.35522 | | | | | | [-3245.95661] | | | | | C ₁₂ Ti ₄ N ₄ | -4073.41358 | | | | | | (-4073.102759) | 75.13 | 483.89 | 0.54 | | | -4073.29079 | | | | | | [-4073.953506] | | | | | C10Ti5N5 | -4901.89785 | 158.28 | 298.21 | 4.37 | | C10115145 | (-4901.57717) | 130.20 | 270.21 | ч.57 | | | -4901.77369 | | | | | | [-4902.461001] | | | | | C ₈ Ti ₆ N ₆ | -5729.82262 | 109.37 | 304.89 | 3.12 | | C8110110 | (-5729.56165) | 107.57 | 304.07 | 3.12 | | | -5729.68969 | | | | | | [-5730.50202] | | | | | C ₆ Ti ₇ N ₇ | -6557.772910 | 91.56 | 398.25 | 1.54 | | C011/11/ | (-6557.71081) | 71.50 | 370.23 | 1.54 | | | -6557.84980 | | | | | | [-6558.02788] | | | | | C ₄ Ti ₈ N ₈ | -7386.224877 | -269.67 | 633.14 | 0.00 | | C4 I 181 18 | (-7385.58105) | 207.07 | 033.17 | 0.00 | | | -7385.68065 | | | | | | [-7385.81647] | |) | 1 | At ^aB3LYP/6-311++G**, ^bM06-2X/6-311++G**, ^cB3PW91/6-311++G**, ^dB3LYP/AUG-cc-pVTZ, and ^eB3LYP/6-311+G*. **Fig. 2.** The selected IR spectrum of C_{20} , $C_{18}Ti_1N_1$ and $C_4Ti_8N_8$, at $B3LYP/6-311+G^*$. Here, the E_{tot} is increased as n is increased and $C_{18}Ti_1N_1$, $C_{16}Ti_2N_2$, $C_{10}Ti_5N_5$, and $C_8Ti_6N_6$ structures compare to C_{20} fulfill "stability conditions" showing the v_{min} values of 127.09, 104.94, 158.28, and 109.37 cm⁻¹, which are high $vs.~82.2~\text{cm}^{-1}$ [26]. Interestingly, there is good consistency between $<\alpha>$ and the order of n. The $<\alpha>$ is improved from 187.27 a.u. for C_{20} to 633.14 a.u. for $C_4Ti_8N_8$. It seems that the substituted Ti, N heteroatoms in $C_{20\text{-}2n}Ti_nN_n$ heterofullerens lead to increasing $<\alpha>$ and $C_4Ti_8N_8$ has more tendency to interaction with the neighboring polar molecule. The substituted doping C_{20} to $C_{18}Ti_1N_1$, $C_{16}Ti_2N_2$, $C_{10}Ti_5N_5$, $C_8Ti_6N_6$, and $C_6Ti_7N_7$ is caused considerably μ of 5.96, 5.96, 4.37, 3.12, and 1.54 Debye, respectively (Table 5). # 3.2. $\Delta E_{HOMO-LUMO}$, IE or IP, and NICS One Ti—N bond of C_{18} Ti₁N₁ is increased the $\Delta E_{\text{HOMO-LUMO}}$ (1.79, 2.06, 1.80 eV) leading to enhanced stability against electronic excitations (Table 6). **Table 6.** The FMO (in a.u.), along with band gap (in eV). | able 6. The | | | band gap (in eV). | |--|--|---------------------------|---| | Species | E _{HOMO} ^{a, (b),} [c] | $E_{ m LUMO}^{ m a,(b),}$ | $\Delta E_{ m HOMO}$ -LUMO ^{a,} (b), [c] | | | [c] | [c] | (b), [c] | | | -0.20134 | -0.13054 | 1.02 | | C | | | 1.93 | | C_{20} | (-0.21055) | (-0.12567) | (2.31) | | | [-0.20455] | [-0.13351] | [1.93] | | | -0.19002 | -0.15070 | 1.79 | | $C_{18}Ti_1N_1$ | (-0.19519) | (-0.11964) | (2.06) | | | [-0.19241] | [-0.12624] | [1.80] | | | | | | | | -0.17362 | -0.11566 | 1.58 | | $C_{16}Ti_2N_2$ | (-0.18059) | (-0.11286) | (1.84) | | | [-0.17470] | [-0.11676] | [1.58] | | | | | | | | -0.19181 | -0.13945 | 1.42 | | $C_{14}Ti_3N_3$ | (-0.14289) | (-0.07834) | (1.76) | | | [-0.13560] | [-0.08806] | [1.29] | | | | | | | | -0.13989 | -0.10388 | 0.98 | | C ₁₂ Ti ₄ N ₄ | (-0.13985) | (-0.10964) | (0.82) | | | [-0.13950] | [-0.10395] | [0.97] | | | 0.17146 | 0.10626 | 1 77 | | C TP N | -0.17146 | -0.10626 | 1.77 | | $C_{10}Ti_5N_5$ | (-0.17086) | (-0.10488) | (1.80) | | | [-0.17365] | [-0.10643] | [1.83] | | | -0.14359 | -0.08387 | 1.63 | | C8Ti6N6 | (-0.14230) | (-0.08321) | (1.61) | | C8116146 | [-0.14230] | [-0.07701] | [1.20] | | | [-0.14000] | [-0.07701] | [1.20] | | | -0.14090 | -0.09408 | 1.27 | | C ₆ Ti ₇ N ₇ | (-0.14088) | (-0.09672) | (1.20) | | C011/11/ | [-0.14581] | [-0.10790] | [1.03] | | | , | - | | | | -0.13346 | -0.08443 | 1.33 | | C ₄ Ti ₈ N ₈ | (-0.13258) | (-0.08651) | (1.25) | | | [-0.12279] | [-0.08700] | [0.97] | | 4 3D 2L 3/D/ALI | 7 V/T/Z bx (O | C 2V/C 211 C* | * 1CD2DW01/C | At *B3LYP/AUG-cc-pVTZ, *bM06-2X/6-311++G**, and *B3PW91/6-311+G*. Four Ti-N bonds of C₁₂Ti₄N₄ are decreased the $\Delta E_{\text{HOMO-LUMO}}$ of 0.98 eV at B3LYP/AUG-cc-pVTZ, 0.82 eV at M06-2X/6-311++G**, 0.97 eV at B3PW91/6-311+G* and leading to the enhanced conductivity of C₁₂Ti₄N₄. Hence, C₁₈Ti₁N₁ is distinguished as the most kinethic stable derivative, whereas C₁₂Ti₄N₄ with four separated Ti—N units via four C=C bonds is classified as the least kinethic stable one. Also, we are evaluated the ionization energy or ionization potential (IE or IP) (Table 7). Now, to probe proper connection, we compare $\Delta E_{\text{HOMO-LUMO}}$, IE or IP, and aromaticity based on NICS (0) of C_{20} and heterofullerenes with n. The $\Delta E_{\text{HOMO-LUMO}}$ value of heterofullerenes is lower than that of C₂₀, and there is no uniformity amid band gap and n (Figure 3). **Table 7.** The ionization potential, and NICS (0), at B3LYP/AUGcc-pVTZ. | Species | IE (IP) | NICS (0) | NICS (0)zz | |---|---------|----------|------------| | C ₂₀ | 167.75 | -23.81 | 3.69 | | $C_{18}Ti_1N_1$ | 162.07 | -42.05 | -60.98 | | $C_{16}Ti_2N_2\\$ | 156.31 | -37.82 | -52.03 | | $C_{14}Ti_3N_3\\$ | 150.81 | -19.50 | -35.12 | | $C_{12}Ti_4N_4\\$ | 145.09 | -15.72 | -55.32 | | $C_{10}Ti_5N_5$ | 139.42 | -13.51 | -40.83 | | C8Ti6N6 | 133.69 | -19.94 | -30.89 | | C ₆ Ti ₇ N ₇ | 127.74 | -13.42 | -16.05 | | C ₄ Ti ₈ N ₈ | 121.87 | -16.10 | -25.16 | **Fig. 3.** The relationship between band gap and n, at B3LYP/AUG-cc-pVTZ. The formations of these nanocages are quite complicated due to the possibility of high-spin states. Such possibilities arise due to insertion of Ti (${}^{3}F_{2}$) and N (${}^{4}S_{3/2}$) of atoms in C₂₀. The band gap values reveal different electronic charge-transfer possibilities within the considered molecules, while Ti—N units are increased in the fullerenes. The IE or IP value of C₂₀. $_{2n}Ti_{n}N_{n}$ heterofullerens is decreased with increasing n (Figure 4). **Fig. 4.** The relationship between ionization potential and n. We are obtained isotropic parameter of -23.8 ppm for C_{20} , which indicates strong aromaticity of it vs. benzene (-8.5 ppm) (Table 7). The $C_{20\text{-}2n}\text{Ti}_n\text{N}_n$ heterofullerenes show different NICS (0) from -42.05 to -13.42 ppm and they are aromatic. Furthermore, the studied heterofullerenes exhibit NICS (0)zz from -60.98 ppm for $C_{18}\text{Ti}_1\text{N}_1$ to -16.05 ppm for $C_6\text{Ti}_7\text{N}_7$ which imply strong ring current vs. benzene (-10.17 ppm). With increasing n, the delocalized π -electrons are shifted from more Ti heteroatoms to neighboring atoms (Figure 5). **Fig. 5.** The relationship between aromaticity and n. Even though the electronegativity difference is significant, π -delocalization effect on the ring perimeter is strengthened in $C_{18}Ti_1N_1$ derivative, while such ring current is weakened in other derivatives. Thus, the isotropic polarizability $\langle \alpha \rangle$ is modified depending on n and dopant topology (Figure 6). **Fig. 6.** The relationship between polarizability and n. 3.3. NBO charge, MEP, and hydrogen adsorption Obviously, the NBO charges of derivatives are not equivalent; so that the negative charge on N sites is changed from -0.973 to -0.589e and the positive charge on Ti sites is improved from +0.527 for $C_4Ti_8N_8$ to +1.269 for $C_{18}Ti_1N_1$ (Figure 7). **Fig. 7.** The NBO charge on atoms of C20 and heterofullerenes, at B3PW91/6-311++G**. Based on Froudakis's findings, $C_{18}Ti_1N_1$ is as the suggested species for H_2 storage [23]. The MEP is displayed though red—blue colors on Ti—N surfaces indicating their dispersed charges, correspondingly (Figure 8). **Fig. 8.** Three-dimensional MEP of the selected derivatives, at $B3PW91/6-311++G^{**}$. We are probed H_2 adsorption on one to eight Ti and N-modified heterofullerenes using DFT simulations to introduce suitable systems for the storage of H_2 molecules. We have not used number of the Ti and N heteroatoms more than eight in C_{20} ; because the optimized heterofullerenes with the molecular formula of $C_{20\text{-}2n}\text{Ti}_n\text{N}_n$ (n > 8) are collapsed to the segregated open cage structures. The mixed transition metal (titanium) and the main element of the periodic table (nitrogen with more electronegative than boron element) have been chosen, because the results of previous studies displayed that the interaction between H₂ molecules and Ti-decorated B₃₈ and B₄₀ fullerenes as the modified adsorbent materials are stronger than those of the other transition metals modified systems [13]. The hydrogen adsorption is designed by reaction of $C_{20\text{-}2n}Ti_{n}N_{n} + 2H_{2} \rightarrow C_{20\text{-}2n}Ti_{n}N_{n}....(H_{2})_{2}$. The overall trend of $|E_{ads.}|$ (in kcal/mol) for two H₂ molecules is arranged as $C_4 Ti_8 N_8 \mid -33.20 \mid > C_6 Ti_7 N_7 \mid -31.04 \mid > C_8 Ti_6 N_6 \mid -29.41 \mid > C_{10} Ti_5 N_5$ -27.54 > $C_{12}Ti_4N_4$ |-25.72 > $C_{14}Ti_3N_3$ $|-23.22| > C_{16}Ti_2N_2| -21.08| > C_{18}Ti_1N_1| -18.9|$ vs. C_{20} (+81.1). Next, the theoretical work needs to be supported more in its theoretical form. Thus, we are added n H₂ to the titanium and nitrogen heteroatoms. Compared to 1Ti/B₃₈/(H₂)₁ complex with capacity of 2.56 wt% and $\mid E_{\text{ads}} \mid$ of 0.22 eV/H₂; here C_{20-2n}Ti_nN_n systems show higher capacity. Each Ti-N unit can bind up to $2H_2$ with $|E_{ads}|$ of 0.07 eV/ H_2 . For example, additional 10H2 molecules can be absorbed to 10H₂/C₁₀Ti₅N₅ complex with capacity of 4.48 wt% and $|E_{ads.}|$ of 0.37 eV/H₂. Hence, the net NBO positive charge of the Ti heteroatom is decreased from +1.269 to +0.6680 also, the net NBO negative charge of the nitrogen heteroatom is decreased from |-0.701e| to |-0.232e|. # 3.4.Reactivity Substituting of Ti—N units is led to various modifications of N, ω , μ , η , χ , S, and ΔN_{max} (Table 8). **Table 8.** The reactivity parameters (in eV), at M06-2X/6-311++ G^{**} . | C20 3.73 4.53 -4.57 2.31 4.57 $\frac{0.2}{2}$ 1.98 C18Ti1 4.15 4.46 -4.28 2.06 4.28 $\frac{0.2}{4}$ 2.08 C16Ti2 4.55 4.32 -3.99 1.84 3.99 $\frac{0.2}{7}$ 2.17 C14Ti3 5.57 2.58 -3.01 1.76 3.01 $\frac{0.2}{8}$ 1.71 N3 5.65 7.01 -3.39 0.82 3.39 $\frac{0.6}{1}$ 4.13 C12Ti4 N4 5.65 7.01 -3.39 0.82 3.39 $\frac{0.6}{1}$ 4.13 C10Ti5 4.01 3.02 3.75 1.00 3.75 0.2 3.00 | |--| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | N ₃ 5.5/ 2.58 -3.01 1.76 3.01 8 1.71 C ₁₂ Ti ₄ 5.65 7.01 -3.39 0.82 3.39 0.6 N ₄ 0.6 C ₁₀ Ti ₅ 0.2 | | N ₄ 5.65 7.01 -3.39 0.82 3.39 1 4.13 | | C ₁₀ Tis 0.2 | | $\frac{\text{C10 Tis}}{\text{N}_5}$ 4.81 3.92 -3.75 1.80 3.75 $\frac{\text{0.2}}{8}$ 2.09 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | C ₆ Ti ₇ N 5.63 4.35 -3.23 1.20 3.23 0.4 2.69 | | C ₄ Ti ₈ N 5.85 3.54 -2.98 1.25 2.98 0.4 0 2.38 | Regardless $C_{10}Ti_5N_5$, N is increased nearly with increasing n (from 3.73 eV for C_{20} νs . 4.15 eV for $C_{18}Ti_1N_1$ to 5.85 eV for $C_4Ti_8N_8$). Moreover, three, and four substituted Ti—N unit structure is the least, and most electrophile species (2.58, and 7.01 eV for $C_{14}Ti_3N_3$, and $C_{12}Ti_4N_4$, respectively, vs.~4.53 eV for C_{20}). $C_{18}Ti_1N_1$ contains the minimum N, S, and the maximum χ , η , and absolute μ among eight analogues. In contrast, $C_{12}Ti_4N_4$ includes the least η and the most ω , S, and ΔN_{max} . Hence, $C_{18}Ti_1N_1$, and $C_{12}Ti_4N_4$ are the least, and the most chemically reactive species, singly. The lowest and the highest positive ΔN_{max} is demonstrated for $C_{14}Ti_3N_3$ and $C_{12}Ti_4N_4$ as the weakest and the strongest electron acceptor from other donors. # 3.5. NBO analysis Here, we are focused on NBO analysis of $Ti_1N_1C_{18}$ species (Tables 9 and 10). **Table 9.** The occupancy of the intramolecular bonds in $Ti_1N_1C_{18}$, at M06-2X/6-311++G**. | Bond | Occup. | ED _A (%) | ED _B (%) | |--------------------|---------|---------------------|---------------------| | π C3 = C10 | 0.74318 | 43.41 | 56.59 | | σ C7 — Ti20 | 0.86892 | 47.47 | 52.53 | | σ C8 — C9 | 0.98876 | 49.88 | 50.12 | | σ C15 — N19 | 0.98465 | 40.01 | 59.99 | | σ C18 — N19 | 0.98498 | 40.16 | 59.84 | | $LP(1)_{N19}$ | 0.72270 | | | | LP(1)Ti20 | 0.73941 | | | **Table 10.** The NBO, and hybridizations of the intramolecular bonds in $Ti_1N_1C_{18}$, at M06-2X/6-311++G**. | Bond | NBO | s (%) | p (%) | d (%) | |--|--|--------------|--------------|-------------| | $\pi_{\text{C3}} = \text{C10}$ | $\begin{array}{l} 0.6589*sp^{99.99}d^{2.69} \\ +0.7523*sp^{99.99}d^{1.30} \end{array}$ | 0.07, 0.08 | 99.75, 99.81 | 0.18, 0.11 | | $\sigma_{C7-Ti20}$ | $0.6890*sp^{47.82}d^{0.01} \\ +0.7247*sp^{0.10}d^{56.24}$ | 2.05, 1.74 | 97.93, 0.17 | 0.03, 98.07 | | σ _{C8} _ _{C9} | $0.7062*sp^{2.00}d^{0.00} \\ +0.7080*sp^{1.99}d^{0.00}$ | 33.28, 33.37 | 66.64, 66.55 | 0.08, 0.08 | | σ _{C15} _ N19 | $0.6325*sp^{2.54}d^{0.00} \\ +0.7745*sp^{2.10}d^{0.00}$ | 28.21, 32.19 | 71.67, 67.74 | 0.13, 0.07 | | $\sigma_{\rm C18-N19}$ | $\begin{array}{l} 0.6337 * \; sp^{2.53}d^{0.00} \\ + 0.7736 * sp^{2.14}d^{0.00} \end{array}$ | 28.29, 31.87 | 71.59, 68.07 | 0.13, 0.06 | | $LP(1)_{N19}$ | $sp^{99.99}d^{0.97}$ | 0.05 | 99.89 | 0.05 | | $LP(1)_{Ti20}$ | sp ^{0.08} d ^{99.99} | 0.73 | 0.06 | 99.21 | The first two columns show the type of orbital and occupancy between 0.98876 electrons for σ_{C8-C9} bonding orbital with sp^2 hybrid vs. 0.72270, and 0.73941 electrons for LP(1)_{N19}, LP(1)_{Ti20} lone pairs $sp^{0.08}d^{99.99}$ $sp^{99.99}d^{0.97}$, with and hybrids, correspondingly. The sp^2 hybrid on C_8 , and C_9 atoms of C₈—C₉ sigma bond has 33.28, and 33.37% s, 66.64, and 66.55% p-character, respectively. Also, the $sp^{99.99}d^{0.97}$ hybrid on lone pair of N₁₉ has 0.05% s, 99.89% p, and 0.05% d-character. While, the $sp^{0.08}d^{99.99}$ hybrid on lone pair of Ti₂₀ has 0.73% s, 0.06% p, and 99.21% d-character. The occupancy of $\sigma_{C7-Ti20}, \; \sigma_{C15-N19}, \; and \; \sigma_{C18-N19} \; is \; 0.86892, \; 0.98465,$ 0.98498 electrons, and $0.6890*sp^{47.82} + 0.7247*sp^{0.10}d^{56.24},$ $0.6325*sp^{2.54}+0.7745*sp^{2.10}$ and $0.6337*sp^{2.53}+0.7736*sp^{2.14}$ hybrid, respectively. Evidently, hetero bonding orbitals of $\sigma_{C7-Ti20}$, σ_{C15-} N_{19} , and $\sigma_{C18-N_{19}}$ have 47.47% C_7 , 40.01% C_{15} , 40.16% C_{18} , 52.53% Ti_{20} , 59.99% N_{19} , and 59.84%N₁₉ characters in their corresponding hybrids, respectively. Therefore, titanium and nitrogen heteroatoms have the more percentage of NBOs and gives the more polarization coefficients (0.7247, 0.7745, and 0.7736) than the homo bonding bonds (C—C and/or C=C) because typical titanium has low ability to form hybrid orbitals and prefers [Ar](4s²)(3d²) valence electronic configuration which leads to the divalent doublet ground state, and nitrogen has the higher electronegativity than carbon atom. The more important $E^{(2)}$ of Ti₁N₁C₁₈ is related to LP(1)_{N19} $\to \pi^*_{\text{C17=C18}}, \ \pi_{\text{C8=C9}} \to \sigma^*_{\text{C7-Ti20}}, \ \pi_{\text{C6=C15}} \to \sigma^*_{\text{C7-Ti20}},$ $\sigma_{C7-Ti20} \rightarrow \pi^*_{C8=C9}$ and LP(1)_{N19} $\rightarrow \sigma^*_{C7-Ti20}$ orbital's and their corresponding energy is 10.03, 7.07, 6.58, 5.83, and 3.42 kcal/mol, correspondingly (Table 11). **Table 11.** The $E^{(2)}$ of the intramolecular bonds in $Ti_1N_1C_{18}$, at M06-2X/6-311++G**. | Donor NBO (i) | Acceptor NBO
(j) | E ⁽²⁾ (kcal/mol) | |----------------------|---------------------|-----------------------------| | $\pi_{C8} = C9$ | σ* C7 — Ti20 | 7.07 | | $\pi_{C6} = C15$ | LP*(2)Ti20 | 0.30 | | $\pi_{C6} = C15$ | σ* C7 — Ti20 | 6.58 | | σ C7 — Ti20 | π^* C8 = C9 | 5.83 | | σ C7 — Ti20 | σ* C9 — C16 | 0.26 | | LP(1) _{N19} | σ* C7 — Ti20 | 3.42 | | LP(1) _{N19} | π^* C17 = C18 | 10.03 | These interactions is resulted from the electron donating of the bonding orbitals to the electron acceptoring anti-bonding orbitals, indicating higher CT is happened in these orbitals, compared to lower CT from $\pi_{\text{C6=C15}}$ to LP*(2)_{Ti20}, and from $\sigma_{\text{C7-Ti20}}$ to $\sigma^*_{\text{C9-C16}}$ with $E^{(2)}$ of 0.30, and 0.26 kcal/mol, respectively. #### 4. Conclusions Substituent effects of Ti—N units on geometry, $\Delta E_{\text{HOMO-LUMO}}$, ionization potential, aromaticity, NBO charge of C₂₀ derivatives are accessed, at DFT. The vibrational frequency calculations imply exclusive of C₄Ti₈N₈ species, reminders are real minima and none of analogous collapse to open deformed cage. The $\Delta E_{\text{HOMO-LUMO}}$ of 1.79, 2.06, and 1.80 eV proposes the C₁₈Ti₁N₁ as the most kinetic stable and the weakest conductive structure. Also, the $\Delta E_{\text{HOMO-LUMO}}$ of 0.98, 0.82, and 0.97 eV suggests the C₁₂Ti₄N₄ with four separated Ti—N units via 4 C=C bonds as the least kinetic stable and the strongest conductive system. The calculated IE (IP) of 162.07 kcal/mol, NICS (0) of -42.05 ppm and NICS (0)_{ZZ} of -60.98 ppm display C₁₈Ti₁N₁ that in which one Ti—N unit is replaced to two neighboring carbon atoms, as the most thermodynamic stable and the most aromatic nanocage. The most and the least charge on Ti of $C_{18}Ti_1N_1$ (+1.269) and $C_4Ti_8N_8$ (+0.527), also the least and the most $|E_{ads}|$ of -18.9 and -33.20 kcal/mol, leads to increasing and decreasing capacity of $C_{18}Ti_1N_1$ and $C_4Ti_8N_8$ for hydrogen storage, respectively. Furthermore, in going from C₁₈Ti₁N₁ to $C_4Ti_8N_8$, as n increases both nucleophilicity index (N), and chemical potential (μ) increase with $C_{18}Ti_1N_1$ and C₄Ti₈N₈ turning out as the least and most nucleophilic species, respectively, while electronegativity (χ) decreases. The MEP maps qualitatively verify the nucleophilicity strength. The NBO analysis of $C_{18}Ti_1N_1$ points out higher ICT including LP(1)_N \rightarrow $\pi^*_{C=C},\,\pi_{C=C}\to\sigma^*_{C-Ti},\,\pi_{C=C}\to\sigma^*_{C-Ti},\,\sigma_{C-\ Ti}\to\pi^*_{C=C}$ and LP(1)_N $\rightarrow \sigma^*_{C-T_i}$ orbitals. #### Acknowledgements Authors state that no fund is used in this research. #### References [1] (a) M. Koohi, H. Bastami, Structure, stability, MEP, NICS, reactivity, and NBO of Si—Ge nanocages evolved from C₂₀ fullerene at DFT. Monatshefte für Chemie – Chem. Mont. 151 (2020) 693. (b) M. Koohi, M. Ghavami, B. N. Haerizade, H. Zandi, M. Z. Kassaee, Cyclacenes and short zigzag nanotubes with alternanting Ge—C bonds: theoretical impacts of Ge on the ground state, strain, and band gap. J. Phys. Org. Chem. 27 (2014) 735. (c) M. T. Baei, M. Koohi, M. Shariati, Characterization of C₂₀ fullerene and its isolated C_{20-n}Ge_n derivatives (n = 1-5) by alternating germanium atom(s) in equatorial position: A DFT survey. - Heteroatom Chem. 29 (2018) e21410. (d) S. Soleimani Amiri, M. Koohi, B. Mirza, Characterizations of B, and N heteroatoms as substitutional doping on structure, stability, and aromaticity of novel heterofullerenesevolvedfrom the smallest fullerene cage C₂₀: A density functional theory perspective. J. Phys. Org. Chem. 29 (2016) 514. (e) M. Koohi, S. Soleimani Amiri, B. N. Haerizade, Substituent effect on structure, stability and aromaticity of novel B_nN_mC_{20-(n+m)} heterofullerenes. J. Phys. Org. Chem. 30 (2017) e3682. (f) M. Koohi, S. Soleimani-Amiri, M. Shariati, Novel Xand Y-substituted heterofullerenes X₄Y₄C₁₂ developed from the nanocage C_{20} , where X = B, Al, Ga, Si and Y =N, P, As, Ge: a comparative investigation on their structural, stability, and electronic properties at DFT. Struct. Chem. 29(3) (2018) 909. (g) M. Koohi, M. Shariati, S. Soleimani Amiri, A comparative study on the Ge₆C₁₄ heterofullerene nanocages: a density functional survey. J. Phys. Org. Chem. 30 (2017) e3678. - [2] (a) M. Z. Kassaee, F. Boazar, M. Koohi, Heteroatom impacts on structure, stability and aromaticity of X_nC_{20-n} fullerenes: A theoretical prediction, J. Mol. Struct. (Theochem, Comput. Theor. Chem.) 940 (2010) 19. (b) M. T. Baei, M. Koohi, M. Shariati, Structure, stability, and electronic properties of AIP nanocages evolved from the world's smallest caged fullerene C20: A computational study at DFT, J. Mol. Struct. 1159 (2018) 118. (c) M. Koohi, M. Z. Kassaee, M. Ghavami, Haerizade, A. A. Ahmadi, heterofullerenes (n = 5 - 10) on focus: A density functional perspective, Monatsh. Chem. 146 (2015) 1409. (d) M. Koohi, S. Soleimani Amiri, M. Shariati, Silicon impacts on structure, stability and aromaticity of $C_{20-n}Si_n$ heterofullerenes (n = 1 - 10): A density functional perspective, J. Mol. Struct. 1127 (2017) 522. - (a) E. Vessally, S. A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C₂₀ fullerene and graphene segment, Talanta 162 (2017) 505. (b) E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage, Physica E 87 (2017) 308. (c) L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, A DFT study on the sensitivity of two-dimensional BN nanosheet to nerve agents cyclosarin and tabun, Thin Solid Films 623 (2017) 157. (d) S. A. Siadati, E. Vessally, A. Hosseinian, L. Edjlali, Possibility of sensing, adsorbing, and destructing the Tabun-2Dskeletal (Tabun nerve agent) by C₂₀ fullerene and its boron and nitrogen doped derivatives, Synthetic. Met. 220 (2016) 606. (e) E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edilali, A. Bekhradnia, A comparative computational study on the BN ring nanographenes, Appl. Surf. Sci. 396 (2017) 740. - [4] (a) E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian, L. Edjlali, Carbon nanocone as an electronic sensor for HCl gas: Quantum chemical analysis, Vacuum 134 (2016) 40. (b) S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies, - Vacuum 136 (2017) 156. (c) F. Behmagham, E. Vessally, B. Massoumi, A. Hosseinian, L. Edjlali, A computational study on the SO_2 adsorption by the pristine, Al, and Si doped BN nanosheets, Superlattices Microstruct. 100 (2016) 350. - [5] Q. Feng, Y. Li, N. Wang, Y. Hao, J. Chang, Z. Wang, X. Zhang, Z. Zhang, L. Wang, A Biomimetic Nanogenerator of Reactive Nitrogen Species Based on Battlefield Transfer Strategy for Enhanced Immunotherapy, Small 16 (2020) e2002138. - [6] L. He, J. Liu, Y. Liu, B. Cui, B. Hu, M. Wang, Z. Peng, Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melaminecyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction, Appl. Cat. B: Env. 248 (2019) 366. - [7] (a) E. Vessally, M. D. Esrafili, R. Nurazar, P. Nematollahi, A. Bekhradnia, A DFT study on electronic and optical properties of aspirin–functionalized B₁₂N₁₂ fullerene–like nanocluster, Struct. Chem. 28 (2017) 735. (b) E. Vessally, E. Ahmadi, S. Alibabaei, M. D. Esrafili, A. Hosseinian, Adsorption and decomposition of formaldehyde on the B₁₂N₁₂ nanostructure: a density functional theory study, Monatsh. Chem. 148 (2017) 1727. (c) K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A theoretical study on the electronic sensitivity of the pristine and Al-doped B₂₄N₂₄ nanoclusters to F₂CO and Cl₂CO gases, Struct. Chem. 28 (2017) 1919. - [8] (a) M. Bertau, F. Wahl, A. Weiler, K. Scheumann, J. Worth, M. Keller, H. Prinzbach, From Pagodanes to Dodecahedranes Search for a Serviceable Access to the Parent (C20H20) Hydrocarbon, Tetrahedron 53 (1997) 10029. (b) H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. D. Gelmont, D. Olevano, B. V. Issendorff, Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C₂₀, Nature 407 (2000) 60. - [9] S. Soleimani-Amiri, M. Koohi, Z. Azizi, Characterization of nonsegregated C₁₇Si₃ heterofullerenic isomers using density functional theory method, J. Chin. Chem. Soc. 65 (2018) 1453. - [10] (a) J. M. Campanera, C. Bo, J. M. Poblet, General Rule for the Stabilization of Fullerene Cages Encapsulating Trimetallic Nitride Templates, Angew. Chem., Int. Ed. 44 (2005) 7230. (b) J. C. Gonzalez, S. Mondal, F. Ocayo, R. Guajardo-Maturana, A. Muñoz-Castro, Nature of C₆₀ and C70 fullerene encapsulation in a porphyrin- and metalloporphyrin-based cage: Insights from dispersion-corrected density functional theory calculations, Int. J. Quantum Chem. 120 (2019) e26080. (c) F. A. Shakib, M. R. Momeni, Density functional investigation of metal encapsulated X@C₁₂Si₈ heterofullerene (Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺, Ca²⁺, Al³⁺, Ga³⁺), Physica B 406 (2011) 1471. - [11] (a) S. A. Siadati, E. Vessally, A. Hosseinian, L. Edjlali, Possibility of sensing, adsorbing, and destructing the Tabun–2D–skeletal (Tabun nerve agent) by C₂₀ fullerene and its boron and nitrogen doped derivatives. Synthetic Met 220 (2016) 606. (b) E. Vessally, S. A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of - ozone and the chemically active gaseous species of the troposphere by using the C_{20} fullerene and graphene segment. Talanta 162 (2017) 505. (c) E. Vessally, S. Soleimani–Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, The Hartree–Fock exchange effect on the CO adsorption by the boron nitride nanocage. Physica E 87 (2017) 308. (d) K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci. 422 (2017) 763. (e) A. Hosseinian, E. Vessally, A. Bekhradnia, K. Nejati, G. Rahimpour, Benzoylethanamine drug interaction with the AlN nanosheet, nanotube and nanocage: Density functional theory studies. Thin Solid Films 640 (2017) 93. - [12] P. W. Dunk, N. K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J. M. Poblet, H. Shinohara, C. L. Hendrickson, A. G. Marshall, H. W. Kroto, The Smallest Stable Fullerene, M@C₂₈ (M = Ti, Zr, U): Stabilization and Growth from Carbon Vapor, J. Am. Chem. Soc. 134 (2012) 9380. - [13] H. Dong, T. Hou, S.-T. Lee, Y. Li, New Ti-decorated B₄₀ fullerene as a promising hydrogen storage material, Sci. Reports 5 (2015) 9952. - [14](a) A. Hassanpour, P. Delir Kheirollahi Nezhad, A. Hosseinian, A. G. Ebadi, S. Ahmadi, S. Ebrahimiasl, Characterization of IR spectroscopy, APT charge, ESP maps and AIM analysis of C20 and its C20-nAln heterofullerene analogous (n = 1 - 5) using DFT, J. Phys. Org. Chem. 34 (7) (2021) e4198. (b) K. Nejati, A. Hosseinian, L. Edilali, E. Vessally, The effect of structural curvature on the cell voltage of BN nanotube based Na-ion batteries, J. Mol. Liq. 229 (2017) 167. (c) L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, A DFT study on the sensitivity of twodimensional BN nanosheet to nerve agents cyclosarin and tabun. Thin Solid Films, 623 (2017) 157. (d) A. Hassanpour, L. Youseftabar-Miri, P. Delir Kheirollahi Nezhad, S. Ahmadi, S. Ebrahimiasl, Kinetic stability, and NBO analysis of the $C_{20-n}Al_n$ nanocages (n = 1 - 5) using DFT investigation, J. Mol. Struct. 1233 (2021) 130079. (e) A. Hassanpour, S. Yasar, A. G. Ebadi, S. Ebrahimiasl, S. Ahmadi, Thermodynamic stability, structural and electronic properties for the C_{20-n}Al_n heterofullerenes (n = 1 - 5): A DFT study, J. Mol. Model. (2021) DOI: 10.1007/s00894-021-04727-y. - [15] P. Liu, H. Zhang, X. Cheng, Y. Tang, Ti-decorated B₃₈ fullerene: A high capacity hydrogen storage material, Int. J. Hydrogen Energy 41 (2016) 19123. - [16] (a) A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098. (b) A. D. J. Becke, Density-functional thermochemistry. III. The role of exact exchange, Chem. Phys. 98 (1993) 5648. (c) C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1988) 785. (d) A. D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys. 104 (1996) 1040. - [17] (a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem., 14 (11) (1993) 1347. (b) A. L. Sobolewski, W. Domcke, Ab Initio Investigation of the Structure and Spectroscopy of Hydronium—Water Clusters, J. Phys. Chem. A 106 (2002) 4158. - [18] (a) W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York (1986). (b) J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic structure Methods, Gaussian, Inc., Pittsburgh, PA (1996). - [19] (a) F. Weinhold, E. D. Glendening, NBO 7.0 Program Manual Natural Bond Orbital Analysis Programs. J. Comput. Chem. 33 (2012) 2363. (b) E. D. Glendening, C. R. Landis, F. Weinhold, Natural bond orbital methods. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 1. - [20] (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, Nucleus-independent chemical shifts (NICS): a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118 (1996) 6317. (b) P. v. R. Schleyer, H. Jiao, N. J. R. van Eikema Hommes, V. G. Malkin, O. L. Malkina, An evolution of the aromaticity of inorganic rings: refined evidence from magnetic properties. J Am Chem Soc 119 (1997) 12669. (c) P. v. R. Schleyer, M. Manoharan, Z. Wang, B. Kiran, H. Jiao, R. Puchta, N. J. R. van Eikema Hommes, Dissected nucleus-independent chemical shift analysis of p-aromaticity and antiaromaticity. Org. Lett. 3(16) (2001) 2465. - [21] a) L. R. Domingo, E. Chamorro, P. Pérez, Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study. J Org Chem 73 (2008) 4615. (b) R. G. Parr, L. Szentpaly, S. Liu, Electrophilicity Index. J. Am. Chem. Soc. 121 (1999) 1922. (c) R. G. Pearson Absolute electronegativity and hardness: applications to organic chemistry. J. Org. Chem. 54 (1989) 1423. (d) P. K. Chattaraj, S. Giri, Stability, Reactivity, and Aromaticity of Compounds of a Multivalent Superatom. J. Phys. Chem. A 111 (2007) 11116. (e) J. Padmanabhan, R. Parthasarathi, V. Subramanian, P. K. Chattaraj, Electrophilicity-Based Charge Transfer Descriptor. J. Phys. Chem. A 111 (2007) 1358. - [22] a) R. C. Haddon, L. T. Scott, π-Orbital Conjugation and Rehybridization in Bridged Annulenes and Deformed Molecules in General: π-Orbital Axis Vector Analysis. Pure Appl. Chem. 58 (1986) 137. (b) R. C. Haddon, Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules. Science 261 (1993) 1545. (c) T. Lin, W.-D. Zhang, J. Huang, C. He, A DFT Study of the Amination of Fullerenes and Carbon Nanotubes: Reactivity and Curvature. J. Phys. Chem. B 109 (2005) 13755. (d) H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, B. Issendorff, Gas-Phase Production and Photoelectron Spectroscopy of the Smallest Fullerene, C₂₀. Nature 407 (2000) 60. (e) Z. Chen, T. Heine, H. Jiao, A. Hirsch, W. Thiel, P. v. R. Schleyer, Theoretical Studies on the Smallest Fullerene: From Monomer to Oligomers and Solid States. Chem. Eur. J. 10 (2004) 963. (f) A. Hirsch, Z. Chen, H. Jiao, Spherical Aromaticity in *I*_h Symmetrical Fullerenes: The $2(N+1)^2$ Rule. Angew. Chem. Int. Ed. 39 (2000) 3915–3917. (g) M. N. Huda, A. K. Ray, Evolution of SiC nanocluster from carbon fullerene, a density functional theoretic study. Chem. Phys. Lett. 457 (2008) 124. (h) R. W. Alder, M. E. Blake, J. M. Oliva, Diaminocarbenes; Calculation of Barriers to Rotation about C_{carbene}-N Bonds, Barriers to Dimerization, Proton Affinities and ¹³C NMR Shifts. J. Phys. Chem. A 103 (1999) 11200. [23] (a) G. E. Froudakis, Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake, Nano. Lett. 1 (2001) 531. (b) A. Mavrandonakis, G. E. Froudakis, M. Schnell, M. Muhlhauser, From pure carbon to silicon carbon nanotubes: an *ab initio* study, Nano. Lett. 3 (2003) 1481. (c) G. Mpourmpakis, G. E. Froudakis, G. P. Lithoxoos, J. Samios, SiC nanotubes: a novel material for hydrogen storage, Nano. Lett. 6 (2006) 158