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A B S T R A C T   

The present study serves experimental and theoretical analyses in developing a hybrid advanced 
structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO- 
TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell 
(PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8 
(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morpho-
logical characteristic were investigated and discussed. The elaborated device, namely ITO/Bl- 
TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposi-
tion and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) 
of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than 
titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The 
developed materials and device would facilitate elaboration of advanced functional materials and 
devices for energy storage applications.   

1. Introduction 

Recently, perovskite solar cells (PVSCs) have attracted huge attention due to the fast-growth of 3.8%–25.2% power conversion 
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efficiency (PCE) within a very short period, which now compete with the silicon photovoltaics [1]. Organic-inorganic perovskites have 
been consistently attracting attention of the scientists and engineers alike in the photovoltaic society in view of their extraordinary 
features, e.g. long diffusion length and carrier lifetimes [2], such that the maximum conversion in this type of device approached 
25.5% [3]. To improve their efficiency, some various methods or strategies were followed, e.g. the carrier multiplication impact, to get 
the more energy of photon with the energy larger than bandgap and multijunction absorbers to get photons with smaller energy than 
bandgap [4]. Presently, two kinds of architectures are known and practiced in solar cells. The first is a solar cell with a layer of 
mesoporous (mp) electron transport contain from semiconductor metal oxide such as TiO2. The second type works on the basis of 
position of electrons and holes transporting within cell structure, which is classified as of p-i-n or n-i-p junction planer structure [5,6]. 
Particularly, for the solar cell with mesostructured, a solution-treated methylammonium lead iodide (CH3NH3PbI3) shows diffusion 
length of electron (e− ) and hole (h+) of 100 and 130 nm approximately. Recently, by using electron beam induced current imaging 
method, Edri et al., illustrated that the diffusion length of hole is longer than that of electron in titanium oxide (TiO2) based electron 
transport layers [7]. Typically, TiO2 has been employed in designing mesoporous electron transport layer (mp-ETL) [8,9]. However, 
the recombination of charges in mesoporous TiO2 based electron transport layer is still remains a challenge as it inhibits the transfer of 
electron because of the scattering of grain boundary, which limits conversion of energy [10–16]. Therefore, enhancing the transport of 
charge has become an acquisition interest. For the mesostructured cells, many endeavors have been made to expedite transport of 
charges via using incorporated TiO2 or substituting it by diverse ions such as Al3+, Nb5+; while morphology change to nanowires TiO2, 
rods and fibers was also studied [17–20]. On the other side, graphene oxide (GO) has an uncommonly high mobility of electron, high 
lucidity at room temperature, and higher stability, which makes it an appropriate substitute to enhance the overall efficiency of 
conversion for energy devices such as photochemical cells, supercapacitor and batteries [21,22–28]. Thus, GO has been utilized in 
various layers of PVSCs, like in mesoporous TiO2 or even utilized in hole transfer materials [29–33]. Cho [34,35–40] served rGO-TiO2 
as a layer in PVSCs and enhanced Open Circuit Voltage (VOC) and Fill Factor (FF), resulting in high efficiency with 19.54% PCE. Wong 
[41] reported the use of GO-TiO2 layers in PVSCs working under low temperature processes with 15.6% PCE. There are several more 
examples of using GO-TiO2 inducing positive effects on PVSCs performance [42–46]. From above literature, it is evident that use of GO 
could enhance the electronic properties of electron transfer materials [29,30,47–50]. Between all precipitation methods, electro-
spinning has engaged more interest because of its ability to synthesize nanoparticles with high aspect and porous [51]. Moreover, 
electrospinning method ease the short fabrication time, nanomaterial can be regulated easy and ecofriendly, mainly considered in 
biomedical engineering [52,53–55]. 

Herein, we aim to show a performance enhancement of mesostructured PVSCs by using GO/mp-TiO2 as electron transport layer 
(ETL) with (FAPbI3)0.8(MAPbBr3)0.2 perovskite absorber used for effective PVSCs. The impact of GO on the performance of perovskite 
solar cell was estimated via time-resolved photoluminescence and ephemeral measurements. Furthermore, that the performance of 
GO/TiO2 through reducing the interfacial resistance was compared with that of mp-TiO2, as measured in terms of improvement in the 
efficacy of charge collection. 

2. Experimental 

2.1. Materials 

Titanium isopropoxide, methyl amine, diethyl ether and acetic acid were supplied from Merck Co., while the polyvinylpyrrolidone 

Fig. 1. Schematic of preparation of electrospun GO-TiO2 NFs.  
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(PVP, M.wt 16000), 2,2-,7,7--tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9-, formamidine acetate, chlorobenzene, hydroiodic acid, 
hydrobromic acid, bis (trifluoromethane) sulfonamide lithium salt, 4-tert-butylpyridine and ethanol were purchased from Sigma 
Aldrich(99%). All the aforementioned chemicals were used without future purification. Fluorine tin oxide conductive glass sheets was 
supplied by Pilkington Co. 

2.2. Synthesis of GO-TiO2 nanofibers (NFs) 

The synthesis of GO-TiO2 NFs was carried out using manual electrospinning system (Fig. 1). The electrospinning system was 
contained from two electrodes to connect with syringe pump and rotating drum that covered by aluminum foil under 450 rpm speed. 
The distance between anode and cathode was 15 cm, and the feeding rate was 1 ml/h and the applied voltage between the tip needle to 
rotating is 9 kV. Initially, in 3 ml absolute ethanol, 5 mg of GO was dispersed by using ultrasonication process [56,57]. After that, it was 
mixed with 50 ml of colloidal yellow TiO2-PVP ethanolic viscous solution. Then, the mixture was transferred carefully to the syringe 
pump connected with positive electrode, while the negative electrode was linked with rotating drum. The obtained PVP-GO-TiO2 NFs 
precipitated on the covered aluminum foil. Finally, it strictly removed via pointed force and calcined at 400 ◦C for 1 h donated at 
GO-TiO2 NFs. The same experimental process was repeated to prepare different weight ratio of GO-TiO2 designated as 3 wt% GO-TiO2 
and 5 wt% GO-TiO2. The TiO2 and GO-TiO2 were prepared in required quantity of ethanol and ethyl cellulose and utilized for spin 
coating. The thickness of paste was controlled via ethanol dilution and spin coating. In present experiments, the optimized conditions 
were coated via 4500 rpm for 30 s with volume ratio of 1:5 v/v. Finally, prepared samples calcined at 550 ◦C for 1 h and cooled at room 
temperature. 

2.3. Device fabrication 

The indium tin oxide (ITO) conductor glass with dimension 3 × 2 was ultrasound in absolute ethanol for 30 min before rinsed and 
dried using hot air flow. The carbon-titanium dioxide (C–TiO2) was precipitated on the ITO conductive side as follows: the solution was 
prepared via mixing 10 ml absolute ethanol, 1 ml titanium chloride and 0.5 sulphuric acid (98%). Then, ultrasonic it for 1h, and was 
coated on the ITO substrate at 3000 rpm for 2 min using spin coating process. After that, it was dried for 1h at room temperature for 30 
min, and posteriorly burned at 500 ◦C for 1h to prompt the crystallization. The layer of 0.01%wt. GO/TiO2 was precipitated on the 
C–TiO2 layer as follow: the precursor solution of 0.04%wt. GO/TiO2 was prepared via mixing TiO2, GO and absolute ethanol (1:4 wt/ 
wt. ratio). The solution was ultrasound for 30 min and spin-coated (0.1 ml) on the layer of TiO2 at 300 rpm for 1 min, and then heated it 
at 250 ◦C for 1h. To obtain perovskite (FAPbI3)0.8(MAPbBr3)0.2 layer, a method with one step was done under N2 conditions. In 100 ml 
of DMSO/DMF solvents, Formamidinium iodide (FAI) prepared by condensing 30 ml HI with 14g of C3H8N2O2, methylammonium lead 
bromide prepared by condensing 5 ml HBr with 40 wt% methyl amide, lead iodide and lead bromide were mixed together under ice 
condition. The mix solution was spin-coated on 0.01 %wt. GO/TiO2 layer at 5000 rpm through 60 s and followed via drying at 80 ◦C for 
1 h. For (spiro-OMeTAD) layer, 0.16 g of 2,2-,7,7--tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9--spirobifluorene in 2 ml chloroben-
zene, 76 ml of bis (trifiuoromethane) sulfonamide lithium salt in 30 ml 4-tert-butylpyridine was mixed with strong stir for 2h. The 
(spiro-OMeTAD) solution was spin-coated at 4000 rpm for 1 min and leave it for 3h to enhance the conductivity. Finally, the prepared 
device was carried to chamber of vacuum evaporation (1 × 10− 6 torr) for precipitation of Pt contact that prepared by photolysis 

Fig. 2. Steps taken in the fabrication of PVSCs.  
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method [58–60,61–67] previously. The temperature of chamber was maintained unchanged by putting the source material in contact 
with a hot surface, that was resistively heated by passing a current through it. The fabricated process was summarized in Fig. 2. 

2.4. Theoretical details 

The PVSC with (n-i-p) configuration (ITO/TiO2/GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-OMeTAD/Pt) utilized for numerical 
emulation is demonstrated in Fig. 3a. A model explanation of a cross section with each layer for (ITO/TiO2/GO-TiO2/(FAPbI3)0.8(-
MAPbBr3)0.2/spiro-OMeTAD/Pt) is displayed in Fig. 3b. To comprehend the behavior of (ITO/TiO2/GO-TiO2/(FAPbI3)0.8(-
MAPbBr3)0.2/spiro-OMeTAD/Pt) solar cell, a theoretical study was carried out using SCAPS-1D under 25 ◦C and AM 1.5 solar spectrum 
and compared the experimental results. Poisson equation was used to describe the J-V characteristics and related to the electric field of 
p-n junction to the density of space charge as following (Eq. (1)): 

∂2φ
∂2x

= −
∂E
∂x

= −
ρ
εs
= −

q
εs

[
p − n+ND(x) − NA(x)±Ndef (x)

]
(1)  

where εs is permittivity of static materials, φ electrostatic potential, p is hole density, q: elementary charge and n: density of electrons. 
At steady state, the continuity equations of electron and hole as follows (Eqs. (2) and (3)): 

∂Jn

∂x
+G − Un(n, p) = 0 (2)  

− ∂Jp

∂x
+G − Up(n, p) = 0 (3)  

where Jn and Jp are the electrons and holes current density, G: generation rate of electron-hole and Un and Up are the rate of net 
recombination. 

Equations of drift diffusion (Eqs. (4) and (5)): 

Jn = qpμnE + qDn
∂n
∂x

(4)  

Jp = qpμpE − qDp
∂p
∂x

(5)  

μn and μp are the mobility of electron and hole, Dn, Dp: electron and hole diffusion coefficient and q: elementary charges. For the 
simulation of SCAPS, the parameters need to be entered. The solar cell parameters were taken depended on previously works [68,69] 
and summarized in Table 1. 

2.5. Characterization 

The functional groups of prepared samples were investigated utilizing Fourier transform infrared spectra (PerkinElmer, Germany), 
while the Raman spectra were carried out at room temperature by Raman spectrometer (Tensor II, Bruker, Germany) with excitation 
light source of 522 nm. The X-ray photoelectron spectroscopy measurements were determined to estimate binding energy with 
ESCALAB 250XI system. Crystal structure and size were characterized with Cu Kα radiation (λ = 1.5418 Ao) via X-ray diffractometer 

Fig. 3. FTIR of (A) GO, (B) TiO2 and (C) 3 wt% GO-TiO2.  
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(D8 advanced, Bruker, Germany) and using Scherrer equation [70] as following (Eq. (6)): 

D= 0.9 λ/β cos θ (6) 

Morphology of the prepared samples was observed on a field emission electron microscope type (S–3400 N, Hitachi, Japan). The 
optoelectronic properties were estimated by using photoluminescence that recorded on fluorescence spectrophotometer (F-4600, 
Hitachi, Japan), while the time-resolved photoluminescence decay was recorded at 650 nm utilizing excitation light pulse with 470 nm 
and 5 MHz frequency from F-7000 spectrophotometer. The lifetime decay was calculated [71] by using following (Eq. (7)): 

I(t) = Io +A1e

(
− t+to

τ1

)

+ A2e

(
− t+to

τ1

)

(7)  

where A1, A2 are weight factors of decay channel, τ1, 2 first and second order of decay time. The average lifetime was calculated by 
using the following equation (Eq. (8)): 

τavg =
∑

n

∑
Anτ2

n∑

m
Amτ2

m
(8)  

3. Results and discussion 

3.1. Structure analysis 

The structural investigations on the prepared compounds were carried out using FTIR, Raman spectra, XRD and XPS. To confirm 
fully oxidize of graphite to GO, FTIR analysis was carried out. The FT-IR spectrum of GO, TiO2, and GO incorporated TiO2 is shown in 
Fig. 3a–c. In Fig. 3a, a broad band located at 3410 cm− 1 can be attributed to OH stretching vibration mode. The stretching mode of 
C––O is shown at 1755 cm− 1, while the skeleton vibration of C––C is observed at 1652 cm− 1. At 1395 cm− 1, a peak is clearly appeared, 
which is corresponding to binding mode of C–H. Another peak is noted at 1048 cm− 1, which assigned to vibration of C–O [72]. The 
FTIR spectrum of TiO2 anatase phase is shown in Fig. 3b. The main vibration peak is located at 625 cm− 1, which assigned to Ti–O bond. 
In spectrum of GO incorporated TiO2 (Fig. 3c), the absorption peak is weekend, which indicate some interaction between TiO2 and GO, 
as well as, reduce in adsorption peaks of O–H and C––O and become weaker, which is corresponding to some reaction. 

The Raman spectra of GO as well as TiO2 particles modified with 1 wt% or 3 wt% GO are shown in Fig. 4a–c. Raman spectra of all 
synthesized compounds are demonstrated two eminent intensity peaks centered at 1380 and 1615 cm− 1, which assigned to D and G 

Table 1 
Perovskite solar cell parameters set.  

Parameters ITO TiO2 GO/TiO2 perovskite Spiro-oMeTAD 

Thickness (nm) 290 30 280 290 220 
Bandgap (eV) 3.4 3.12 1.54 3.06 
Electron affinity (eV) 3.9 4 3.8 2.1 
Dielectric perittivety (er) 8 9 6.2 2.8 
Electron mobility (cm2/Vs) 18 18 1.8 10–3 

Hole mobility (cm2/Vs) 12 12 1.8 10–3 

Donor density (cm¡3) 3*1019 2*1015 109 / 
Acceptor density (cm¡3) / / 109 3*1019  

Fig. 4. Raman spectrum (A) GO, (B) 1 wt% and (C) 3 wt% GO incorporated TiO2.  
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bands, respectively. As shown in Fig. 4b and c, four predominate intensity bands are located at 180, 425, 540 and 663 cm− 1 which are 
attributed to Eg, B1g, A1g + B1g and Eg active modes of anatase phase. When compared the intensity ratio ID/IG for 1 wt% and 3 wt% 
GO incorporated TiO2, it is found that it increased with increase of GO dopant, which indicated formation of more carbonic structures 
with sp3 hybridization. The D intensity peak is shifted to lower wavenumber with increasing TiO2, which may be back to the stress by 
TiO2 nanoparticles growing on the graphene sheet surface, this confirms more reaction or interaction between GO and TiO2 [73,74, 
75–79]. 

To estimate the elemental composition and chemical state, XPS analysis was carried out. The XPS analyses of GO and 1 wt% GO- 
TiO2 are shown in Fig. 5a–d, in which fully element fine spectra of C 1s and O 1s can be distinctly specified. The fine spectra of O 1s in 
GO and 1 wt% GO-TiO2 are also shown in Fig. 5b. The XPS analysis shows difference in peak position and shapes. For GO, the intensity 
peak at 533 eV is imputed to OH groups on the surface (Fig. 5b), while the intensity peak at 530 eV can be corresponding to Ti–O–C 
bond for 1 wt% GO-TiO2 and this bonding refers to strong interaction between GO and TiO2 that been product from incorporating 
process [80]. The C 1s intensity peak of GO and 1 wt% GO-TiO2 are demonstrated in Fig. 5c. The results indicated that the binding 
energy C 1s for 1 wt% GO-TiO2 is lower than in GO. Moreover, it appears two peaks at 286 and 288 eV which assigned to C–C and C––C 
of pure GO, while intensity peak centered at 284 eV corresponds to C–O of 1 wt% GO-TiO2. Fig. 5d shows deconvolution curves of C 1s 
for pure GO and 1 wt% GO-TiO2. The peaks located at 286, 288 and 290 eV are respectively corresponding to C–C, C–O and O–C––O 
bonds of GO, while for same bonds in 1 wt% GO-TiO2, it showed at 284, 286 and 288 eV [81]. As illustrated obviously in XPS spectra, 
the intensity strength of oxygen functional group reduced clearly in 1 wt% GO-TiO2 indicating reducing it after incorporation process. 

Fig. 5. XPS of GO and 1 wt% GO-TiO2 (a) survey spectrum, (b) O 1s, (c) C 1s, and (d) deconvoluted C 1s.  
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The XRD of pure GO, TiO2 and 1, 3 and 5 wt% GO incorporated TiO2 nanocomposite are shown in Fig. 6a–e. The diffraction peak 
locates at 11.7◦ is assigned to GO, corresponding to the spacing of layer of graphene oxide (GO) 0.75 nm, which is larger than layer 
spacing of graphite that reported by Wang et al. [82]. The enlarged layer space is indicated entering oxygen-functional groups into the 
graphite structure, which leads to expansion of layer of graphite. The XRD pattern of TiO2 and 1, 3 and 5 wt% GO incorporated TiO2 are 
in good agreement with tetragonal anatase TiO2, the results with (JCPDS-21-1272), diffraction peaks at 2θ of 25.35◦, 37.78◦, 48.07◦, 
53.93◦, 55.11◦ and 62.72◦ corresponding to (101), (004), (200), (105), (211) and (204), respectively. The XRD results suggest that 
incorporating GO holds the anatase TiO2 phase profitably with no obvious effect of patterns of it, as well as, the results show no obvious 
diffraction peaks for GO in GO-TiO2 nanocomposite, demonstrating the relativity limited mass percentage of GO incorporating [83]. 
Moreover, the expanded spectra obviously appeared at (101) diffraction peak at 2θ of 25.35◦, which is progressively moving towards 
lower 2θ, indicating a possible reaction between GO and TiO2 during incorporating process. 

The XRD analysis of (FAPbI3)0.8(MAPbBr3)0.2 thin film precipitated via different TiO2 and 1 wt% GO-TiO2 electron transfer ma-
terials is shown in Fig. 7a–c. The results appear diffraction peaks at 2θ of 14.3◦, 21.12◦, 29.55◦ and 33◦, respectively corresponding to 
(111), (120), (222) and (231), which revealed the tetragonal structure perovskite lattice [84]. On the other hand, the results exhibited 
slight shift towards higher positions, with respect to 2θ of (14.3◦) because of deposition of MAPbBr3. The XRD patterns appeared that 
the reflection peak at 14.3 (111) in GO-TiO2 based perovskite film is higher than TiO2 and it preferred (111) orientation axis. 
Moreover, for GO-TiO2 based perovskite film, the relative intensity of planes (111) to (120) is much higher than other film, which may 
be back to the vertical growth perovskite grain. 

3.2. Morphology characterization 

The surface morphology of the prepared samples was estimated using FESEM-EDX and TEM. The FESEM images of GO and rGO are 
shown in Fig. 8a and b. The images are exposed thin sheets with folded morphology, as well as, the GO images shown a small rolling 
structure and the aggregated GO sheets are straggled from one another. After reduction process (Fig. 8b), the layer of rGO becomes less 
carbonic, illustrating the presence of well exfoliated graphene. Moreover, the rGO SEM images demonstrated a very small thickness 
and random distribution [85]. Fig. 8c appears the FESEM images of TiO2 were precipitated at 2 ml/h feed rate, which disclosed forming 
NFs with uniform diameter and length. The FESEM images of incorporating different weight ratio of GO with TiO2 are exhibited in 
Fig. 8d–f. The images appear that the GO ratio incorporating are effect on the diameter of TiO2 NFs clearly, whereas, the diameter of 
TiO2 NFs is reduced upon increase of GO, but decreased from 135 to 230 nm. Fig. 8g–j shows the FESEM images of (FAPbI3)0.8(-
MAPbBr3)0.2 thin film precipitated on the FTO substrate, TiO2, 3 wt% rGO-TiO2 and 5 wt% rGO-TiO2 respectively. The images (Fig. 8g) 
exhibit a consolidated and bushy or dense with 450–500 nm grain size, while Fig. 8h shows severe in grain size up to 600 nm and these 
boosts in grain size propose that the TiO2 easies nucleation site for the (FAPbI3)0.8(MAPbBr3)0.2. When (FAPbI3)0.8(MAPbBr3)0.2 is 
precipitated on FTO/TiO2, the grain size has been rising to 800 nm approximately with consolidated in nature as shown in Fig. 8i. This 
increase in particle size and compact nature of grain size causes higher VOC, FF and lower recombination rate, leading to higher 

Fig. 6. XRD of (A) GO, (B) TiO2, (C) 1 wt% GO-TiO2, (D) 3 wt% GO-TiO2 and (E) 5 wt% GO-TiO2.  
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conversion efficiency of solar cell. Moreover, an increase in rGO incorporating ratio to 5 wt% causes slight reduction in grain size to 
750 nm, but most of grain remain precise, as in Fig. 8j. These reduction in grain size emerges from high nuclei center that is produced 
from higher concentration of GO and smaller diameter of TiO2 [86]. From these FESEM results, the 3 wt% rGO-TiO2 electron transfer 
materials easies the less sites of nucleation. It is recognized that lower crystallization of (FAPbI3)0.8(MAPbBr3)0.2 perovskite layer 
consisted of a higher ΔGcritical energy, which then decreases the nuclei numbers. Therefore, the growth of perovskite layer will begin 
from limited defined nuclei centers, which results in limited grain boundary and grain with large size [87,88]. 

3.3. Optoelectronic analysis 

The photoluminescence (PL) and time-resolved photoluminescence (TRPL) analysis were carried out to estimate the optoelectronic 
properties and charge dynamic of TiO2, 1 and 3 wt% GO-TiO2 deposited on (FAPbI3)0.8(MAPbBr3)0.2 layer as an electron transfer 
material (ETMs) and the results are shown in Figs. 9 and 10. In Fig. 10, the PL spectra appeared without a hole transfer material (HTM) 
quencher, as well as, it showed an emission peak at ~ 778 nm back to prepared samples. The PL spectra showed emission peak at ~778 
nm for TiO2NFs/(FAPbI3)0.8(MAPbBr3)0.2 with a reduction for hybrid samples because of the effective electron disarmament from 
conduction band (CB) of/(FAPbI3)0.8(MAPbBr3)0.2 to CB of GO and then to TiO2. In addition to, the PL intensity of the produced 
nanoparticles dropped when the concentration of GO increased, showing a delay or friction in electron–hole recombination due to 
effective charges transfer as the doping ratio was increased. 

Time-resolved photoluminescence (TRPL) analysis was measured to estimate the electron lifetime of the prepared electron transfer 
materials (ETMs) and the results are shown in Fig. 10. The spectrum was fitted to the function of tri-exponential (Eq. (2)) and it showed 
the decay of lifetime in nanoseconds. This function contains a rapid decay lifetime component, which would generate from the charge 
carriers quenching that relocated to the electron contacts, while the two slow lifetime of decay component could be assign to the 
relative recombination of holes and electrons before collection of charges [88]. The average lifetimes of the prepared samples were 
calculated from Eq. (3) and the results are summarized in Table 2. 

The results indicate that the TiO2 and 3 wt% GO-TiO2 deposited on (FAPbI3)0.8(MAPbBr3)0.2-layer film electrodes demonstrate fast 
decay lifetimes of 290 and 86 ns (τ1) respectively, while slow lifetimes of decay for respective electrodes are 13 and 19 ns (τ2). The 
estimated fraction values A1 of the fast decay of lifetimes are 0.037 and 0.026 for TiO2/(FAPbI3)0.8(MAPbBr3)0.2 and 3 wt% GO-TiO2/ 
(FAPbI3)0.8(MAPbBr3)0.2 electrodes and 0.732 and 0.626 for A2 of respective electrodes. These results suggest that electrons extrac-
tions from conduction bands of (FAPbI3)0.8(MAPbBr3)0.2 to CB of 3 wt% GO-TiO2 is more effective relatively, as well as, it exposed that 
GO easies effective charge dissociation in the (FAPbI3)0.8(MAPbBr3)0.2 layer. In addition to, the TRPL measurements illustrated that the 
incorporating nanocomposite sample easies electron extraction capability from CB of (FAPbI3)0.8(MAPbBr3)0.2 layer to CB of 3 wt% 
GO-TiO2. 

3.4. Numerical investigation of solar cell 

Beginning from the enter parameters of fabricated solar cell layers, the J-V properties of fabricated PVSC were emulated and 
paralleled to experimental data. A theoretical treatise of absorber defect density effect on the properties of PVSC is first carried out. The 

Fig. 7. XRD of (A) (FAPbI3)0.8(MAPbBr3)0.2, (B) TiO2 doped and (C) 1 wt% GO-TiO2 doped.  
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density defect is a substantial parameter that defines the electrical properties of PVSCs and, hence can assist to detect the efficiency 
[89]. In the range of 1014-1017, the effect results of defect densities on PVSC J-V properties are displayed in Fig. 11a. To detect the 
defect density that reproduce the experimental data, emulsion date or results were contrasted with experimental results. The defects 
density has a considerable effect on the value of VOC, were it reduce from 1.15V to 0.85V upon increase in defect density from 1014 to 
1017 cm− 1 without any impact of Jsc values, and these results are in agreement with reported results [90]. The experimental and 
theoretical calculation of J-V plot are presented in Fig. 11b. The results show that the calculations are in agreement with each other. 
The experimental and theoretical calculations appeared that conversion efficiency of power were 13.15% and 13.32% respectively. on 
the other hand, the quantum efficiency is another substantial property to investigate our numerical calculations, and the results are 
shown in Fig. 11c. The results obtained that the theoretical plot is in good agreement with experimental curve. As well as, form this 
plot, observed the contribution of electron-hole pairs that photogenerated in current density, where the experimental data appear 49% 
and 52% for theoretical data, which indicate that the half of photons fallen on PVSC are utilized in the process of conversion. From 
Fig. 11b and c, its illustrated that the design model depend on recombination during defects is fit to demonstrate experimental data 

Fig. 8. FESEM of (a) GO, (b) rGO, (c) TiO2 NFs, (d) 1 wt% GO-TiO2, (e) 3 wt% GO-TiO2, (f) 5 wt% GO-TiO2, (FAPbI3)0.8(MAPbBr3)0.2 perovskite 
deposited on different ETLs on (h) 1 wt% GO-TiO2, (i) 3 wt% GO-TiO2 and (j) 5 wt% GO-TiO2. 
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from QE and J-V data. 

3.5. Photovoltaic measurements 

Fig. 12a appear a graphical display of the perovskite system having Glass/ITO/3 wt%GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/MeO-
TAD/Ag arrangement utilized in this study. In fabricating PVSCs, (FAPbI3)0.8(MAPbBr3)0.2 absorber layer is sandwiched between TiO2 
block layer/3 wt%GO-TiO2 that work as ETMs and spiro-MeOTAD HTMs. The SEM cross section image of fabricated PVSC is shown in 
Fig. 12b, where the thickness are 50, 130, 550, 200 and 70 nm for TiO2, 3 wt%GO-TiO2, (FAPbI3)0.8(MAPbBr3)0.2 capping layer, HTM 

Fig. 9. PL spectrum of prepared electrodes.  

Fig. 10. TRPL of TiO2/(FAPbI3)0.8(MAPbBr3)0.2 and 3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2.  

Table 2 
TRPL decay measurements of TiO2 and 3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2.  

Perovskite/ETMs τ1 τ2 A1* A2* <τ>

(ns) (ns)   (ns) 

TiO2/(FAPbI3)0.8(MAPbBr3)0.2 290 13 0.037 0.732 151 
3 wt% GO-TiO2NFs/(FAPbI3)0.8(MAPbBr3)0.2 86 19 0.026 0.626 52  
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and Ag respectively. The image is shown the production of (FAPbI3)0.8(MAPbBr3)0.2 capping layer with highly crystalline and pin-hole 
free on the 3 wt%GO-TiO2 film and this layer separates of the spiro and TiO2 electron transfer materials (HTMs). So, in this device, the 
ohmic contact between electrodes are little possibilities. The current-voltage (J-V) properties of prepared PVCS and it parameters are 
shown in Fig. 12c and summarized in Table 3. In this report, we utilized four synthesized materials (TiO2, 1 wt% GO-TiO2, 3 wt% GO- 
TiO2 and 5 wt% GO-TiO2) as electron transporting materials (ETMs) and investigated its execution utilizing the (FAPbI3)0.8(-
MAPbBr3)0.2 as adsorbing layer of light. The results appeared that the device based on TiO2 showed the efficiency less than device- 
based GO-TiO2, which may be attributed to smaller grain size as showed in FESEM results [91]. From results (Table 3), the device 
based 1 wt% GO-TiO2 shown VOCof 1.124 V, JSC of 23.45 mAcm− 2, FF of 0.702 yielding PCE 18.50%, while in device based 3 wt% 
GO-TiO2 exhibited VOCof 1.76 V, JSC of 24.06 mAcm− 2, FF of 0.712 yielding PCE 20.14%. The difference in PEC% may be back to the 
fast transportation of electrons and low recombination of e− -h+ [91]. In the case of 5 wt% GO-TiO2 ETMs, the J-V results shown VOC of 
1.133 V, JSC of 23.59 mAcm− 2, FF of 0.734 yielding PCE 19.61%. The decrease in efficiency emerges because of the high graphene 
oxide concentration and low grain size, and this causes decreasing in crystalline and hence difficultly in charge transport. All efficiency 
results are in agreement with PL spectrum results. 

To distinctly appear the pathway of charge transfer, the band gap diagram of ITO, TiO2, GO-TiO2, ETM and ETM was plotted on the 
bases of their edges of conduction band and energy gap as following: 

Anatase TiO2 (− 4.0eV), ETM layer (− 3.9eV), the HOMO level of ETM layer (− 5.20eV) and (− 4.3eV) for GO as shown in Fig. 13. 
The diagram shown the reduce or lower energy gap of GO and this causes transfer the photoexcited electron from ETM layer and TiO2 
to GO. So, the GO/TiO2 nanocomposite based PVSC should supply improved collection and charge transfer properties, as well as, a 
good performing wt.% GO/TiO2 nanocomposite PVSC is fabricated via future controlling film thickness. 

Comparing with previous reports (Table 4), this fabricated PVSCs showed a good Jsc, VOC, and efficiency. 

Fig. 11. (a) effect of defect density on J-V curves of fabricated PVSC, (b) J-V plots from theoretical validation and experimental on PVSC, (c) QE of 
theoretical and experimental on PVSC. 
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4. Conclusion 

A series of wt.% GO-TiO2 composite NFs high crystalline are synthesized by a electrospun method and deposited on boundary of 
(FAPbI3)0.8(MAPbBr3)0.2 perovskite and its photovoltaic activity is investigated. The effect of GO in TiO2 NFs have been estimated in 
detail. The 3 wt% GO-TiO2 composite NFs easies the limited centers of nuclei cause in highly uniform perovskite grain size. The implied 
effect of the 3 wt% GO-TiO2 and mechanism were studied by TRPL analysis. The results of charges transfer exposed that GO easies 
better collection of charges and fast electron transportation, causes to a frequently ameliorated PEC. The optimized 3 wt% GO-TiO2 
composite NFs-based electron transfer materials obtained 20.14 % PCE with VOC 1.176 V, Jsc 24.06 mA/cm2 and FF 0.712. The 3 wt% 
GO-TiO2 could avail as an effective channel of electrons extraction and transfer from (FAPbI3)0.8(MAPbBr3)0.2 perovskite layer. The 
hybridization also improved the values of Jsc and VOC, leading to higher efficiency transportation, as constructed to the TiO2 
nanoparticles. This novel synthesis method proposes an appropriate and friendly model to enhance the PVSC efficiency. 

Data availability 

All data generated or analyzed during this study are included in this published article. 

Fig. 12. (a) schematics device, (b) FESEM cross section of 3 wt% GO-TiO2 based (FAPbI3)0.8(MAPbBr3)0.2 and (c) J-S curve of fabricated PVSCs.  

Table 3 
J-V of prepared materials based on (FAPbI3)0.8(MAPbBr3)0.2.  

Perovskite/ETMs VOC (V) Jsc (mA/cm2) FF %PEC 

TiO2/(FAPbI3)0.8(MAPbBr3)0.2 1.132 23.73 0.686 18.42 
1 wt% GO-TiO2NFs/(FAPbI3)0.8(MAPbBr3)0.2 1.124 23.45 0.702 18.50 
3 wt% GO-TiO2NFs/(FAPbI3)0.8(MAPbBr3)0.2 1.176 24.06 0.712 20.14 
5 wt% GO-TiO2NFs/(FAPbI3)0.8(MAPbBr3)0.2 1.133 23.59 0.734 19.61  
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