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A B S T R A C T   

Optimization of biofuel production from algal oil through utilizing a CaO-based catalyst was 
carried out in this study. The optimal point for the highest yield of the reactions was determined 
using machine learning. To implement the optimization task, and to make predictions, we used 
three different methods, including Quantile regression, Logistic regression, and Gradient Boosted 
Decision Trees. The regression problem includes the amount of Catalyst, Reaction time, and 
Methanol/oil as input features, and FAME (fatty acid methyl ester) yield is the single output. We 
tuned the boosted version of these models with their important hyper-parameters and selected 
their best combination. Then different standard metrics are employed to assess their performance 
of them. Considering R2 score, Quantile regression, Logistic regression, and Gradient Boosted 
Decision Trees have error rates of 0.934, 0.996, and 0.998, and with MAE, they have 1.94, 1.68, 
and 1.17 errors, respectively. Also, Considering MAPE 2.14×10-2, 1.89×10-2, and 1.29×10-2 

values obtained. Gradient Boosting is selected as the most appropriate model finally. Further
more, the optimal output value with the proposed approach is 97.50, with the input vector being 
(x1 = 153, x2 = 0.625, x3 = 20).   

1. Introduction 

Optimization of biofuel production has been a subject of great interest for sustainable development and expansion of renewable 
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energy sources for the society. Basically, biofuel can be produced from different sources such as biomass which is considered as 
sustainable feedstock for production of biodiesel. FAME is known as the main component of biodiesel which can be obtained utilizing 
esterification or/and transesterification reaction in a reactor operating in either batch or continuous mode. The reaction features need 
to be controlled to achieve the best yield of biodiesel production. Biodiesel production relies heavily on four main input parameters: 
temperature, time, catalyst content, and methanol to oil ratio [1–8]. 

Indeed, the relationship between the input and outputs parameters must be determined to optimize the process. This task can be 
implemented by optimization and development of process models such as mechanistic models or machine learning models. These 
process models need to be precisely tuned in order to obtain the best description and optimization of the process. Furthermore, nu
merical schemes are required to be developed for optimization of the process and solution of the governing equations. Machine 
learning (ML) can be considered a branch of computer science mainly used in experimental science. This discipline is a natural 
consequence of Computer Science and Statistics junction and tries to extract useful information from any data set. So, ML is applicable 
anywhere with some experimental data and Motivation to find some relationship between some features and some targets [9–11]. 

Logistic regression [12] is a kind of generalized linear regression analysis that is particularly well suited for multivariable control 
applications. In contrast to common linear regression models, the logistic regression model limits the output value to the range (0,1) 
[13]. 

Quantile regression is effective when predicting an interval rather than a single point. Prediction intervals are sometimes calculated 
under the assumption that the standard deviation of the error in the prediction is zero and constant. Even for errors with non-constant 
variance or a non-normal distribution, quantile regression provides reasonable prediction intervals [14,15]. 

Ensemble methods, especially Tree-based models are also strong and popular methods. As an ensemble method we use gradient 
boosting on the top of decision trees. Gradient boosting is a powerful ML model with numerous successful usages in classification and 
regression problems in various domains similar to our problem [16,17]. This is an ensemble-based method comprised of several basic 
predictors. Based on data from a bootstrap sample, we built each base predictor as an individual tree model, which was then divided 
into regions and a basic model was fitted to each region [17–19]. 

2. Data set 

With only 17 data points in total, we have a very small dataset with only three inputs and one output in this study. There are three 
features to consider: X1 = reaction time, X2 = catalyst amount, then X3 = ratio of methanol to oil. The aim is to produce FAME (fatty 
acid methyl ester). The entire data is depicted in Table 1 [4,20]. 

3. Methodology 

3.1. Quantile regression 

In 1978, Koenker and Bassett extended the traditional regression model by developing quantile regression as an extension of that 
model. Panel quantile regression is type of this model utilized to a panel of data [21,22]. Considered a linear model of the τ th quantile: 

yi = xT
i βτ + ei, i ∈ {1, 2,…, n}

the τ th quantile of ei is equal to 0. The estimator of βτ gained through below equation: 

β̂τ = argmin
∑n

i=1
ρτ
(
yi − xT

i β
)

Table 1 
List of the experimental data [4,20].  

Run X1 = Reaction time X2 = Catalyst amount X3 = Methanol:oil Y= FAME yield (%) 

1 60 0 40 17.88 
2 60 1 20 23.14 
3 120 1 40 93.34 
4 120 1 40 92.45 
5 120 0 20 5.82 
6 180 0 40 16.94 
7 60 2 40 9.09 
8 180 1 20 96.15 
9 180 2 40 80.83 
10 120 0 60 29.65 
11 60 1 60 32.65 
12 120 2 60 23.35 
13 120 1 40 95.65 
14 120 2 20 83.65 
15 180 1 60 28.46 
16 120 1 40 91.67 
17 120 1 40 88.49  
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Instead of optimizing the sum of squared residuals, as ordinary least squares (OLS) does, quantile regressions employ the condi
tional quantiles of the dependent items to do so [23]. 

Quantile models, in comparison with linear methods, are typically less biased to skewed data and are able to get a wider range of 
outcomes. Thus, the approach fit non-normally distributed data very well and generate stronger outputs [24]. 

3.2. Logistic regression 

Logistic Regression is a multivariable control approach that is based on generalized linear regression analysis. In contrast to 

Fig. 1. Quantile regression train phase.  

Fig. 2. Quantile regression test phase.  
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traditional linear models, the Logistic model uses a sigmoid function to limit the target value to the interval (0,1). For the purposes of 
this study, we will refer to the random variables at hand as “features,” while Y will serve as the binary response variable of interest. To 
assess the provisional presumption, P(Y = 1 |X1,X2, …,Xp), the logistic regression approach uses X1, …,Zp [25,26]: 

P
(
Y = 1

⃒
⃒X1,…,Xp

)
=

exp
(
β0 + β1X1 + ⋯ + βpXp

)

1 + exp
(
β0 + β1X1 + ⋯ + βpXp

)

Estimated from the data set via maximum likelihood, the regression coefficients β0, β1, …, βp are simply referred to as regression 

Fig. 3. Logistic regression train phase.  

Fig. 4. Logistic regression test phase.  
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Fig. 5. Gradient boosting train phase.  

Fig. 6. Gradient boosting test phase.  

Table 2 
Outputs of developed approaches.  

Models MAE R2 MAPE 

Gradient Boosting 1.17 0.998 1.29E-02 
Logistic regression 1.68 0.996 1.89E-02 
Quantile Regression 1.94 0.934 2.14E-02  
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Fig. 7. Projection of X1 and X2 with estimation surface in the final GBRT method. X3 = 40 is regarded as Constant. The optimal value of y is 96.86 when x1 = 153 and 
x2 = 0.529. 

Fig. 8. Projection of X1 and X3 with estimation surface in the final GBRT approach. X2 = 1 is regarded as Constant. The optimal value of y is 97.46 when x1 = 153, x3 
= 20.0. 
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coefficients. Y=1 probability for an unseen sample is then predicted by replacing the β′s in the equation above with their predicted 
counterparts and the X’s with their realizations for the new data point (sample) [27]. 

3.3. Gradient boosting 

One of the superlative well-known approach is the Gradient Boosting Machine (GBM) [18]. This method has recently inspired the 
creation of a number of noteworthy ensembles, which we will discuss later [28]. 

Each iteration of the Gradient Boosting Machine represents the steepest descent reduction of a specific loss function, making the 
model a stage-wise additive one. Numerical optimization is used to compute the predictive function in the function space. GBM can 
employ a decision tree or a lineal regression as its basis learner, however most practitioners use Gradient Boosting Decision Trees 
(GBDT). The following algorithm is a pseudo-code description of the generic Gradient Boosting learning technique [17,18,29–31]. 

4. Results and discussion 

The mentioned methods are tuned with their important hyper parameters. This tuning is done with the help of genetic algorithm. In 
fact, various combinations of possible amounts for hyper-parameters are considered as individuals in the genetic algorithm, and to 
prevent overfitting, a special fitting function is considered with the K-fold mechanism. 

Then their performance are examined trough these metrics [32]:. 

•R2 score: 1 −

∑m
i=1

(Predicted Efforti − Observed Efforti)2∑m
i=1

(Observed Efforti − Average Effort)2
.  

• MAE is the arithmetic mean of errors between observed and expected effort: MAE = 1
N
∑N

i=1|Observed Efforti − PredictedEfforti|.. 
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• RMSE: The square root of the mean square of observed and projected effort differences RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(Observed Efforti − Predicted Efforti)2

N

√

.. 

By comparing Figs. 1, 3 and 5, we can consider the GB model is the most accurate model in the training stage. Nevertheless, this 
must also be confirmed in the testing phase. Therefore, we compare Figs. 2, 4 and 6. By placing the information of these diagrams with 
Table 2, this fact is confirmed, so we choose the boosting Gradient model as the model with the best generality. 

Fig. 7 shows the 3D demonstration for showing the simultaneous influence of the reaction time and catalyst amount on the effi
ciency of biofuel production when the value of methanol to oil ratio is constant. Fig. 8 demonstrates the 3D depiction for evaluating the 
simultaneous impact of the reaction time and methanol to oil ratio on the efficiency of biofuel production when the value of catalyst 
amount isn’t changed [20]. Additionally, Fig. 9 presents the 3D projection for evaluating the simultaneous impact of the methanol to 
oil ratio and catalyst amount on the efficiency of biofuel production when the value of reaction time is constant. Figs. 10–12 show the 
impact of reaction time, catalyst amount and methanol to oil ratio as individual parameter on the efficiency of biofuel production. As 
can be seen from the figures, at the beginning, the biodiesel production efficiency improves instantly by increasing the catalyst amount, 
but later, it begins to decline. The increased efficiency of biodiesel may be rationalized by the fact that catalytic reactions involving 
triglycerides can be sped up by using an excessive enough reaction of catalyst. Conversely, increasing the reaction time has a beneficial 
impact on biofuel production efficiency by increasing the rate of fatty acid conversion. But by achieving an efficiency higher than the 
maximum amount of that, the biofuel production starts decreasing. Moreover, at the beginning of process, through enhancing the 
methanol to oil ratio, the efficiency of biofuel production significantly improves, but after that before reaching the highest efficiency 
point it slowly begins to decline. Therefore, it is worth noting that the efficiency of biodiesel production decreases by reducing the 
methanol quantity [33,34]. Table 3 presents the optimized values of the parameters for reaching the maximum efficiency of biofuel 
production. 

5. Conclusion 

This study used three methods to make predictions: Quantile regression, Logistic regression, and Gradient-Boosted Decision Trees. 
Reaction time, Catalyst amount, Methanol/oil as input features, and FAME yield as the single output feature in the regression problem. 
We selected the best combination for these models’ boosted versions using hyper-parameter tuning. Then, in order to gauge how well 
they are doing, various standard metrics are applied. Quantile regression, Logistic regression, and Gradient Boosted Decision Trees 
have R2 (coefficient of determination) of 0.934, 0.996, and 0.998, respectively, and with MAE, they have 1.94, 1.68, and 1.17 errors. 
The MAPE values of 2.14×10-2, 1.89×10-2, and 1.29×10-2 are also considered. Finally, the most general and accurate model is 
Gradient Boosting. Using this approach, the best output value is 97.50, with inputs (x1 = 153, x2 = 0.625, x3 = 20). 

Fig. 9. Projection of X2 and X3 with estimation surface in the final GBRT approach. X1 = 120 is regarded as Constant. The optimal value of y is 97.46 when x2 =
0.529, x3 = 20.0. 
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