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Green processing based on supercritical solvents has attracted much attention recently in different fields
such as pharmaceutical industry due to its superior characteristics. Comprehensive modeling was per-
formed in this study to analyze the preparation of nanomedicine using green supercritical processing.
Computational analysis was performed in order to estimate the solubility at different pressures and tem-
peratures. The model was developed based on the input parameters and can estimate the only output of
the process which is drug solubility in the supercritical solvent. In this work, we examined how temper-
ature and pressure affect EXE (Exemestane) drug solubility using different tree-based ensemble methods.
The models used in this analysis are the Random Forest (RF), the Extremely Randomized Tree (ET), and
the Gradient Boosting (GB). Model optimization and hyper-parameter tuning are also accomplished with
the aid of Golden eagle optimizer (GEOA). The R2 values for the test phases of ET, GB, and RF were 0.993,
0.985, and 0.978, respectively. The scores are 0.9945, 0.9758, and 0.9904 in train phases. Specifically, the
ET model was chosen since it is the most accurate one. Error rates for this model are 2.317 with MSE,
1.522 with RMSE, and 0.2113 with MAPE.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction dioxide as the solvent and some methods have been quite success-
Processing of drug particles of solid oral dosage formulations
using supercritical methods have been studied recently for produc-
tion of nanomedicine with enhanced bioavailability. The method
has been also known as the green route for production of drug sub-
stances due to lack of organic solvents in the system for prepara-
tion of the nanomedicine [1–4]. Extensive research has been
done on process design as well as measurement and correlation
of solubility data for variety of medicine in supercritical carbon
ful for the purpose of modeling and correlation the dataset [5–8].
Thermodynamic-based and machine learning (ML) models are
among the most widely applied techniques for estimating drug sol-
ubility to input variables such as density, pressure, temperature,
etc. [9,10].

The methods of machine learning have been successfully tuned
and implemented for fitting of medicine solubility to the pressure
and temperature, while this method indicated better performance
in terms of statistical parameters such as AIC, RMSE, R2, etc. when
compared with other approaches in solubility correlations such as
thermodynamic Equation of State models, known as EoS models.
The methods of ML require measured dataset of solubility to train
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Table 1
EXE solubility data used for ML modeling [23].

T (K) P (MPa) S (�10 g L�1)

308 12.2 0.67
15.2 1.38
18.2 1.47
21.3 2.41
24.3 2.5
27.4 3.41
30.4 4.1
33.4 4.55
35.5 5.92

318 12.2 0.56
15.2 4.01
18.2 5.13
21.3 8.23
24.3 10.39
27.4 12.33
30.4 14.78
33.4 16.47
35.5 17.78

328 12.2 0.53
15.2 3.25
18.2 8.23
21.3 12.28
24.3 16.46
27.4 22.85
30.4 28.02
33.4 33.18
35.5 36.94

338 12.2 0.35
15.2 3.82
18.2 8.99
21.3 16.57
24.3 24.65
27.4 35.36
30.4 45.7
33.4 59.79
35.5 68.25

348 12.2 0.34
15.2 2.5
18.2 8.42
21.3 19.2
24.3 35.36
27.4 51.34
30.4 67.31
33.4 91.74
35.5 102.67
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its algorithms, and also for the testing the model. Therefore, having
obtained the experimental data of solubility, the ML approach
would be a great option for correlation of the solubility data so that
the time and costs of measurements can be saved accordingly [11].

Classification, grouping, and regression are just a few of the
many tasks for which machine learning methods are now widely
used. Ensemble models are a set of methods that are rapidly gain-
ing in popularity. In order to improve the generalization and preci-
sion of a single learner, scholars have begun to use ensemble
methods, which are collections of models whose predictions are
combined into a single model. In this subset of ML algorithms,
boosting and bagging are two of the most popular methods
[12,13]. Boosting provides weights to the samples frequently and
retrains the weak estimators to focus more on the under-
estimated samples [14,15]. Bagging is the process of randomly
extracting feature/sample subsets from a dataset in order to train
different weak estimators and increase model diversity [16,17].
This study employed three ensemble estimators, all of which are
based on DT (Decision Tree). For this study, we chose Random For-
ests (RF) and Extremely Random Trees (ET) as bagging methods
and Gradient Tree Boosting (GB) as boosting methods.

Gradient boosting is primarily concerned with maximizing the
cost function by employing weak learners to generate predictions
and combining vulnerable learners to minimize the loss function
using an additivemodel. In thismodel, the loss function is ameasure
used in the gradient boosting technique to identify themodel’s coef-
ficient at fitting the underlying data, and decision trees are
employed as core models. In order to ‘‘correct” the residuals in the
forecasts, regression trees are used because they provide absolute
values for splits and their output may be merged together. There
are new decision trees introduced into the model at each stage
[18,19].

Random Forest (RF) constructs a forest in an ad hoc manner.
This woodland is filled with Decision Trees (DTs). Furthermore,
there is no link between any of the DT in the RF. When a new sam-
ple arrives in the anomaly detection field, each DT in the forest pre-
dicts which category the sample should belong to, and the results
of all DTs are then aggregated to determine which category the
sample belongs to. The training feature vectors are initially ran-
domly sampled by the RF (bootstrap samples). When building a
DT, the ideal trait to split can be all or any of the features. As a
result, the input samples of each DT differ. As a result, each tree
produced is distinct. The benefits of randomness avoid over-
fitting, while using the mean of all DTs for prediction eliminates
certain inaccuracies [15,20].

Extra Trees, sometimes known as Extremely Randomized Trees,
is an ensemble method based on Decision Tree estimators. When
dividing a tree node, the cut point and associated features are pro-
duced at random. An Extra Tree is a powerful tool for both classi-
fication and regression problems [21,22].

In this work, for the first time, we have employed multiple
advanced machine learning models to predict the equilibrium sol-
ubility of the drug namely EXE (Exemestane) in supercritical car-
bon dioxide (Sc-CO2) at different temperatures and pressures via
three methods of Random Forest (RF), Extremely Randomized Tree
(ET), and the Gradient Boosting (GB). The outputs of these three
models are then compared with measured data for the sake of val-
idation of the results, and the effects of input parameters will be
evaluated on the EXE solubility in the solvent.
2. Data of EXE solubility in the solvent

In this study, we are working with a regression task which is the
correlation of a drug solubility to the input parameters as listed in
Table 1. There are 45 data points in this activity, which are
2

arranged as follows: There exist two inputs of the model which
are numeric (Pressure and Temperature) and one output which is
also numeric (Solubility of EXE drug). The data of EXE solubility
are used from a published source [23], and the experimental
results were used to build, train, and assess the models. The list
of EXE solubility is listed in Table 1, and the pairwise distribution
of parameters of the process is illustrated in Fig. 1.

3. Computational methodology

In this research, the three methods introduced in the introduc-
tion section, which are tree-based ensemble methods, have been
used as the core of the analysis for correlating the EXE solubility
data as listed in Table 1. In general, we can summarize the model-
ing activity in the following items:

� Pre-Processing: data normalization and outlier detection.
� Model selection: hyper-parameter tanning in this research is
done using Golden eagle optimizer (GEOA) [24]. GEOA is a
meta-heuristic optimization methodology that offers benefits
over conventional optimization methods. The algorithm begins
with a basic population and then duplicates golden eagle hunt-
ing behavior and improves population fitness and discovers the
optimal state. The golden eagle’s instinct to soar and circle prey



Fig. 1. Distributions of parameters for EXE solubility in Sc-CO2.
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serves as inspiration for GEOA. These golden eagles have excel-
lent memories and will often tell other eagles where they last
saw their prey. In order to address issues of exploitation and
optimization, GEOA’s numerical equations will model attack
and cruise trajectories. The program takes a starting population
and optimizes it by simulating the hunting strategies of the
golden eagle to determine the most effective strategy. As a
result, GEOA can also be employed to tackle real-world engi-
neering challenges, where it excelled. The outputs indicate that
GEOA is able to solve optimization issues with challenging and
unknown search spaces and identify the global optimum
[24,25].

� Evaluation: Finally, the optimized models were evaluated using
visual and statistical methods.

3.1. Random forest and extra tree

Bagging methods such as RF and ET are useful to improve deci-
sion tree estimators. Random Forest (RF) is an ensemble learning
3

model that incorporates voting to boost the efficiency of learners
with numerous base trees [26]. A random forest’s widespread
acceptance stems from its ability to accurately forecast a wide
range of outcomes with a small number of inputs. This technique
effectively deals with both high-dimensional feature spaces and
limited sample sizes. Since they may be run in parallel, they can
manage realistically enormous systems [15]. The original dataset
is bootstrapped into N instance sets in order to create an RF model.
For each bootstrap sample, a fully-grown (unpruned) decision tree
will be constructed. The following is the next step. During this
stage, a collection of K base models is chosen at random to execute
the function of dividing possibilities rather than using all available
predictors. Iterations of C tree models with the aforementioned
properties will be performed until the desired properties are
obtained. Non-observed data will then be calculated by integrating
the estimations from various C trees. Random Forest maximizes
tree variety while minimizing model variance by constructing
DTs from distinct training groups. The next equation shows an
Random forest regression estimator formulation [27]:



Table 2
Final Models Errors.

Models RMSE MSE MAPE

ET 1.522 2.317 0.2113
GB 2.351 5.531 0.4033
RF 2.827 7.991 0.3197

Table 3
Final Models R2 score.

Models Train R2 Test R2

ET 0.9945 0.9938
GB 0.9758 0.9853
RF 0.9904 0.9780

Fig. 2. Observed vs Predicted Values (ET Model).

Fig. 3. Observed vs Predicted Values (GB Model).

Fig. 4. Observed vs Predicted Values (RF Model).

Fig. 5. Representation of the modelling Residuals of ET model.

Fig. 6. Representation of the modelling Residuals of GB model.
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bf CRF xð Þ ¼ 1
C

XC

i¼1
Ti xð Þ

In this equation, C denotes the count of DTs, and x stands for the
instance. Ti(x) also reflects a unique Decision Tree based on boot-
strap instances and a selection of entry variables. For the present
being, it is possible to estimate out of bag (OOB) error using Ran-
4

dom Forest by evaluating instances that were not chosen in con-
nection with the drive of this shaft during the bagging step. This
sub-association will not utilize any external data to obtain an
impartial estimate of generalization error [28,29]. Each input vari-
able should be given a significant score. In this model, one input
variable is changed while all other input variables remain constant,
and the model’s average decrease is also calculated [28,30].



Fig. 7. Representation of the modeling residuals of RF model.

Fig. 8. Simulated prediction surface o
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Extra Trees (ET), a tree-based method, are similar to random
forests. ET must greatly randomize both the particularities of each
tree node and the cut point choice during its division in order to
categories and evaluate data in a way that is useful to the user
[9,21,22].

Both methods are equivalent in terms of how they construct
several trees and partition nodes using random subsets of func-
tions. The main difference is that ET uses randomized divides
rather than bootstrap data, rather than optimal splits [31].
3.2. Gradient boosting

The method of Gradient Boosting (GB) expands upon DT model
by introducing a statistical approach whose fundamental premise
is to employ a series of ‘‘weak” estimators to get a single ‘‘strong”
ensemble estimator [32,33]. In GB, new decision trees are con-
structed successively by minimizing the current residuals. This
f solubility variations (ET model).



B. Luo, T. Yang, S.F. Jawad et al. Journal of Molecular Liquids 377 (2023) 121517
approach to continuous model generation is basically a type of
functional gradient descent, in which estimate is maximized by
creating a new base estimator (DT) to optimize the loss function
at any stage [19,34,35]. The GB method is illustrated in the follow-
ing algorithm:

Initialize F0 xð Þ ¼ argminp
PN

i�1L yi; Pð Þ
For k ¼ 1toM :

1. Determine the negative gradient

y
�
i ¼ � @L yi ;F xið Þ

@Fxi

� ih
2. Grow a DT model

ak ¼ argmina;b
PN

i¼1 y
��bh xi; akð �2

�
3. Choose a gradient

descent step size

pk ¼ argminp
PN

i¼1L yi; Fk� 1 xið Þ þ ph xi; að Þð Þ 4. Update
the approximation of F(x)

Fk xð Þ ¼ Fk � 1 xð Þ þ pkh x; akð ÞOutput: the final
estimation function Fk xð Þ
Fig. 9. . Simulated prediction surface o
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4. Results and discussion

Chosen ensemble models tuned using Golden Eagle Optimiza-
tion Algorithm and final optimized estimators obtained. Then they
implemented with their best configurations and evaluated. The
error rates and R2 scores of final models are displayed in Table 2
and Table 3.

Looking at Tables 2 and 3, the ET model is clearly better than the
other two models. In addition to this analysis, Figs. 2–4 display the
comparison of the experimentally observed values and the pre-
dicted values, in which the blue squares are the training data,
and the red triangles are the test data. These three figures together
show the fact that although all three models have high quality and
efficiency, the ET model has the best result among them. The same
can be seen for Figs. 5–7, which show the residuals of the models.

The model’s representation as 3D and 2D plots are provided in
Figs. 8–10 & Figs. 13–14, respectively, in which the predicted solu-
bility surface is indicated versus temperature and pressure which
are the two input variables of the machine learning models. It is
clearly observed that the effect of P on the EXE solubility is more
f solubility variations (GB model).



Fig. 10. Simulated prediction surface of solubility variations (RF model).

Fig. 11. Feature Importance for solubility variations (using ET Model). Fig. 12. Feature Importance for solubility variations (using RF Model).

B. Luo, T. Yang, S.F. Jawad et al. Journal of Molecular Liquids 377 (2023) 121517

7



Fig. 13. Trends of input parameter P on different Temperature levels.

Fig. 14. Trends of input parameter T on different Pressure levels.
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profound than the effect of T which could be attributed to the fact
that the density of the solvent changes more with the pressure
change as it is in the gas state. It is also seen that T has attractive
effects on the EXE solubility, so that both factors have positive
effects in the EXE solubility values. It can be perceived that both
pressure and temperature must be enhanced in order to increase
the solubility of the drug in the solvent for preparation of the
nanoparticles.

Also, one of the unique features of bagging models based on
decision trees is the ease of finding the importance of features.
Accordingly, in Figs. 11 and 12, the importance of two features is
shown with the final models of ET and RF, and in both of them,
the pressure feature is more important than the temperature
which is consistent with the physical justifications.
5. Conclusion

Computational simulation of pharmaceutical solubility in
supercritical solvent was carried out in this study via an advanced
hybrid modeling approach. The process of supercritical has been
8

recognized as the green method in pharmaceutical manufacturing.
Using several tree-based ensemble approaches, we investigate how
temperature and pressure affect EXE medication solubility. The
Random Forest (RF), Extra Tree (ET), and Gradient Boosting models
were used in this investigation (GB). As the main aspect of novelty
of this research, Golden eagle optimizer (GEOA) is also employed
for model optimization and hyper-parameter tweaking. The R2 val-
ues for the ET, GB, and RF test phases were 0.993, 0.985, and 0.978,
respectively. In train phases, the scores are 0.9945, 0.9758, and
0.9904. The ET model was specifically chosen since it is the most
accurate and general. This model has error rates of 2.317 with
MSE, 1.522 with RMSE, and 0.2113 with MAPE. The interpretation
of the results indicated that pressure is more effective than the
temperature on the solubility of EXE in the Sc-CO2 as the green
solvent.
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