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A B S T R A C T   

Sumanene-hydroxyurea (SUM-HYD) conjugations were assessed based on the density functional theory (DFT) 
computational assessments for proposing a novel drug design and delivery platform. The structural geometry 
optimizations and electronic molecular orbital features evaluations were done to assess the investigated systems. 
The results indicated the existence of a semi-cup-like structure for the SUM counterpart, in which the in-side and 
out-side of the surface structure were participated in interactions with the HYD counterpart to yield the SHi and 
SHo complexes of SUM-HYD conjugation. The existence of interactions were analyzed and the models were 
assessed based on the involving interactions and the finally obtained configurations revealed a better suitability 
of the SHo conjugation in comparison with the SHi conjugation. Additionally, the electronic molecular orbital 
features indicated a lower hardness for the SHi conjugation even in comparison with the singular HYD substance. 
Furthermore, the models were recognizable by the SUM sensing functions towards the HYD drug substance. 
Assessing the impacts of water and ethanol media on the Gibbs free energy of SUM-HYD conjugations indicated 
the stability of models in both media with a priority of water medium. As a result, the models were stabilized and 
their features indicated benefits of formations of such SUM-HYD conjugated systems for approaching a novel 
drug design and delivery platform.   

Introduction 

By modernizing the human life level, innovating novel drug design 
and delivery platforms is crucial for dealing with the diseases and 
enhancing the treatments to approach successful medications [1,2]. 
Indeed, either the appearance of new diseases or the wildness of earlier 
diseases leaded to unsuitability of the conventional treatments for so 
many diseases and disorders as seen by the complicated situation of 
recent COVID-19 pandemic era [3,4]. On the other hand, treating the 
earlier known diseases such as cancer has been still an unsolved problem 
with serious negative impacts on the human life levels all around the 
world [5,6]. The results of basic and clinical studies indicated that the 
unknown initiation of cancer and its rapid growing are main problems 

for dealing with this issue and many more studies are required for 
approaching successful medications [7,8]. In this regard, developing 
novel drug design and delivery platforms could be a possible method of 
medication enhancement for approaching a more successful treatment 
for both of earlier known diseases and newly appearing ones [9,10]. 
However, it is not an easy task and the drug-carrier conjugations should 
be customized for learning their details of communications as a first step 
of knowing their applicability for working in the drug delivery platforms 
[11,12]. This issue has been very widely investigated especially after the 
innovation of high-surface-area nanostructures to examine their features 
as possible drug carriers by providing a smart surface adsorbent [13,14]. 
Since many details are inside the drug-nanostructure conjugations, they 
should be learned carefully for developing their featured functions and 
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applications [15,16]. Additionally, analyzing the complex systems in the 
smallest scales has been found as an appropriate method of approaching 
novel information for pushing forward the development of drug design 
and delivery platforms [17–20]. On the other hand, examining the 
properties of single-standing nano-flakes has been found as another 
important issue to manage a meaningful study on the 
drug-nanostructure conjugations [21,22]. As a result, a representative 
nano-flake was investigated in this work towards the drug design and 
delivery platform of an anticancer along with quantum chemical cal-
culations of sumanene-hydroxyurea conjugations to provide details of a 
proposed systems for approaching a possible medication purpose. 

Sumanene (SUM) (Fig. 1) is a single-standing structure representing 
a surface portion of the well-known fullerene nanostructure, in which 
the recognition of its features has been the target of several studies to 
this time [23,24]. The SUM-drug conjugations have been also investi-
gated to learn the availability of this nano-flake for employing in the 
drug design and delivery platforms, in which the results indicated 
benefits of this nano-flake structure for making such conjugations 
regarding the medication purposes [25,26]. Indeed, the studies on 
nanostructures indicated so many features to be considered for 
customizing them towards a specific function and application [27–30]. 
To this point, the unique semi-cup-like geometrical conformation of 
SUM made it as a structure with inside and outside surfaces for working 
in a dual way of interaction with other substances [31,32]. Additionally, 
the small size of SUM made it also useful for interacting with small size 
drugs to make a conjugation along with the involving interactions be-
tween the counterparts [33,34]. Hydroxyurea; or hydroxycarbamide, 
(HYD) (Fig. 1) is a small size drug with significant roles for the treating 
different types of cancer such as leukemia and also other diseases such as 
sickle cell disease [35,36]. By the importance of medication by HYD, 
considerable efforts have been dedicated to enhance the efficacy of HYD 
and lowering its adverse effects; however, arising serious adverse effects 

limited its prescription to careful treatments [37,38]. Hence, it is an 
important issue to focus on the enhancement of HYD for approaching 
more successful medications [39,40]. To this aim, the SUM-HYD con-
jugations were assessed in this work for providing more insights into the 
drug design and delivery platforms along with computational studies. As 
shown in Fig. 1, the interactions between SUM and HYD counterparts 
were analyzed to learn the formation of SUM-HYD conjugations and 
their details. Accordingly, the required information was obtained by 
characterizing the models through structural geometry optimizations, 
electronic features evaluations, and media impacts examinations; the 
results were exhibited in Figs. 1–4 and Tables 1–4. To re-emphasize on 
the main goal of this work, it should be mentioned that the SUM-HYD 
conjugations were assessed to propose a novel drug design and de-
livery platform regarding the evaluated insights into the interacting 
counterparts and their corresponding structural and electronic features 
based on the quantum chemical computations. 

Materials and methods 

To propose a novel drug design and delivery platform regarding the 
SUM-HYD conjugations, 3D molecular models of SUM and HYD coun-
terparts were assigned as the parental models of this work for making 
the desired conjugations (Fig. 1). Quantum chemical density functional 
theory (DFT) calculations were performed for optimizing their geome-
tries besides evaluating the corresponding structural and electronic 
features using the wB97XD/6-31G* level of computations as imple-
mented in the Gaussian program [41]. It is known that the computa-
tional methods have been found as very suitable tools to solve the 
complicated systems in a pure state of excluding any external interferes 
or implementing the known interferers to recognize the original nature 
of investigating systems and their detected impacts [42,43]. The 
parental models were allowed for participating in interactions together 

Fig. 1. The optimized parental HYD and SUM models and SUM-HYD conjugations.  
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through both of inside and outside surfaces of the SUM nano-flake, in 
which two SUM-HYD conjugations were recognized; SHi and SHo. It 
should be mentioned here that the finalized configurations of converged 
SUM-HYD conjugations were assigned by SHi and SHo in this work. The 
evaluated energy features including the total energy (Etot) and interac-
tion energy (Eint) were summarized in Table 1 in addition to the basis set 

superposition error (BSSE) correction [44]. To learn details of conju-
gations, the involving interactions were analyzed by the quantum theory 
of atoms in molecules (QTAIM) [45]. Next, energy levels of the highest 
occupied and the lowest unoccupied molecular orbitals (EHOMO and 
ELUMO), energy gap (Egap), chemical hardness (η), and chemical poten-
tial (μ), were summarized in Table 3 as the frontier molecular orbitals 

Fig. 2. The IR spectra of parental HYD and SUM models and SUM-HYD conjugations.  
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electronic features [46]. Additionally, thermochemistry features were 
evaluated to show the impacts of water and ethanol media on the Gibbs 
free energy variations (ΔG) features of SHi and SHo conjugations using 
the polarizable continuum model (PCM) approach [47]. Besides the 
quantitative analyses, the models were exhibited through the optimized 
configurations of Fig. 1, the vibrational infrared (IR) spectra of Fig. 2, 
the HOMO-LUMO distribution patterns of Fig. 3, and the illustrated 
density of states (DOS) diagrams of Fig. 4. All the required information 
was evaluated to assess the SUM-HYD conjugations for proposing a 
novel drug design and delivery platform. 

Results and discussion 

Developing the drug design and delivery issues is indeed a non-stop 
process requiring many types of information to learn the mechanism of 
this complicated process and its improvements [48]. In this regard, it is 
crucial to recognize the features of the main counterparts of drug design 
and delivery platforms; including carrier and drug substances [49]. 
Besides, the sensing functions of carrier could make it a responsible of 
managing a targeted drug delivery process to carry the uploaded drug up 
to a correct destination among several other unwanted destinations and 
receptors [50]. To this aim, a customization of carrier-drug conjugation 
is needed how to proceed such a vital function through the medicinal 
functions and applications [51]. Accordingly, the current work was done 
by the aim of customizing the sumanene (SUM) carrier substance to-
wards the hydroxyurea (HYD) anticancer drug through the formation of 
SUM-HYD conjugated complexes in complementary to the results of 
earlier works for nano-enhancement of HYD anticancer [52–55]. As 
shown in Fig. 1, the models of this work were optimized and their 3D 
conformations and interacting configurations were found and exhibited. 
The initiating part of a computational study is the preparation of opti-
mized 3D structures to yield the minimized energy geometries in both of 
singular and complex states. Hence, the current work were intimated by 
optimizing the molecular models and the results were shown as HYD, 
SUM, and two configurations of SUM-HYD conjugations including SHi 
and SHo. To explain the i and o indices, it should be mentioned that the 
pre-optimized models were placed towards each other regarding the in - 
i and out - o sides of SUM; as it was found as a semi-cup-like structure not 
a planar one, yielding SHi and SHo configurations and the optimized 
models were found as the resulting complex models. Indeed, it was an 

advantage of SUM with two inside and outside surfaces to be examined 
in both sides regarding the adsorption of external drug. Hence, two 
configurations were found accordingly to emphasize on the importance 
of such semi-cup-like surfaces to be examined within both of surfaces. It 
is known that the structural stabilizations of bimolecular models are 
somehow challenging regarding the possibility of many available con-
figurations; therefore, all possible configurations should be examined. 
Within this work, such an important challenge was implemented and the 
results of various configurations of models indicated the formation of 
one configuration in each side as indicated by SHi and SHo configura-
tions. As a consequence, these two configurations were assigned as the 
reference bimolecular structures of SUM-HYD conjugations to be 
investigated in this work. 

As exhibited in Fig. 1, the models were optimized in the singular and 
conjugated complex states, in which the main point was that the 
parental SUM was found as a semi-cup-like surface and the occurrence of 
interactions between SUM and HYD counterparts were possible from 
both of in - i and out - o sides of the SUM resulting two configurations 
including SHi and SHo. It was amazing that HYD substance was moved to 
the edge of SUM in both of in and out initiating configurations and 
making interactions with the surface edging atoms. To examine the 
stabilities of conjugated systems, the energy features were evaluated for 
the models (Table 1) to show the levels of total energy (Etot) and inter-
action energy (Eint). The values of − 694,402.70 and − 694,405.36 kcal/ 
mol were found for the Etot of SHi and SHo configurations showing a 
better stability level for the out-side interaction (SHo) in comparison 
with the in-side interaction (SHi) of HYD and SUM counterparts. As 
could be found by these energy values, the formation of SHo configu-
ration could be known more favorable than the formation of SHi 
configuration. The repulsive forces from the surface edges might ban the 
formation of a favorable in-side conjugation, in which such repulsive 
force are absent in the adosorption processes of out-side configuration. 
To learn the strength of interactions between the conjugated system 
counterparts, the values of − 4.52 kcal/mol and − 8.18 kcal/mol were 
found for the Eint of SHi and SHo showing a significance of favorability of 
the formation of SHo configuration versus the formation of SHi config-
uration. The employed BSSE correction did not change the comparative 
results of complexes and the strength of interacting models were 
confirmed accordingly. The evaluated IR spectra of models (Fig. 2) also 
indicated the variations of vibrational strengths in the investigating 

Fig. 3. The HOMO-LUMO distribution patterns of parental SUM model and SUM-HYD conjugations.  
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models from the singular state to the conjugated complex state, in which 
the obtained non-imaginary frequencies affirmed the stability of con-
jugated systems. Especially in the SHo spectra, the highlighted changes 
of 3000–3750 cm− 1 region for the conjugated system in comparison 
with both of singular HYD and SUM counteracts indicated a higher 
contribution of HYD for interacting with the SUM substance in com-
parison with the SHi complex. As a result, the formation of SHo conju-
gation was found as the typical interacting configuration of SUM-HYD 
conjugated systems, but the formation of SHi was still meaningful to be 
considered. 

Details of involving interactions in the formation of SUM-HYD con-
jugated complexes were found by performing QTAIM analyses on the 
optimized structures. As shown by the dot-lines in Fig. 1, there were two 
interactions in SHi and there interaction in SHo between the interacting 
counterparts. Additional results were summarized in Table 2 to show the 
quantitative interaction details of conjugated models including the 
interaction distance, electron density (ρ), and energy density (H) of each 
interaction. As could be learned by the obtained results, two H…O in-
teractions were found from the SUM side to the HYD side in the SHi 
configuration showing the importance of this single-standing structure 
for working in a successful interaction system even by the assistance of 
surrounding hydrogen atoms. Indeed, such a single-standing mode of 
stability could make the SUM substance as a nano-flake for working in 
various purposes and processes especially in the formation of conjugated 
systems with the small sized molecules such as HYD. For the case of SHo, 
three interactions in two types of H…N and C…N were found. An 
important achievement of these analyses is the contribution of different 
atoms of HYD to interactions with the SUM substance, in which the 
starting pre-optimizing configuration was playing a dominant role for 
the generation of such a remarkable configuration state. The oxygen 
atoms of HYD were dominant in the case of in-side interactions whereas 
the nitrogen atoms were dominant in the case of out-side interactions. As 
a consequence, all possibilities of interactions were almost examined for 
approaching the purpose of interacting conjugation formations. 

To assess the electronic features of investigated models including the 
singular SUM and HYD counterparts and their conjugated SUM-HYD 
complexes, the frontier molecular orbitals analyses were done in both 
of quantitative and qualitative terms. As shown in Fig. 3, the distribution 

Fig. 4. The DOS diagrams of parental SUM model and SUM-HYD conjugations.  

Table 1 
Energy features of SUM-HYD conjugations.  

SUM- 
HYD 

Etot kcal/mol Eint kcal/ 
mol 

BSSE kcal/ 
mol 

BSSE+Eint kcal/ 
mol 

SHi − 694,402.70 − 4.52 1.86 − 2.66 
SHo − 694,405.36 − 8.18 1.40 − 6.78  

Table 2 
Interaction features of SUM-HYD conjugations.  

SUM-HYD Interaction Distance Å ρ au H au 

SHi 1: H…O 2.58 0.0076 0.0088 
2: H…O 2.55 0.0081 0.0068 

SHo 1: H…N 2.93 0.0050 0.0075 
2: C…N 3.54 0.0041 0.0061 
3: C…N 2.59 0.0091 0.0117  

Table 3 
HOMO-LUMO features of parental HYD and SUM models and SUM-HYD 
conjugations.  

SUM-HYD EHOMO eV ELUMO eV Egap eV η eV μ eV 

SHi − 7.11 1.19 8.29 4.15 − 2.96 
SHo − 7.60 0.62 8.22 4.11 − 3.49 
SUM − 7.33 0.99 8.32 4.16 − 3.17 
HYD − 8.74 2.78 11.51 5.76 − 2.98  

Table 4 
Media impacts on the Gibbs free energy of SUM-HYD conjugations.  

SUM- 
HYD 

ΔG(Water-Gas) 
kcal/mol 

ΔG(Ethanol-Gas) 
kcal/mol 

ΔG(Water-Ethanol) 
kcal/mol 

SHi − 11.81 − 11.21 − 0.60 
SHo − 9.86 − 9.36 − 0.50  
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patterns of HOMO and LUMO were localized at the SUM counterpart in 
both of SHi and SHo conjugated complexes. In this regard, an important 
role of SUM for the formation of SUM-HYD hybrids was learned by 
conducting the interactions and adsorbing the electronic patterns. 
Referring to the expected sensing functions of a carrier towards the 
delivery of an uploaded drug, the evaluated molecular orbital features 
could lead to such achievements. Within the current results, the role of 
SUM was significant for detecting the molecular orbitals variations 
before and after the conjugation formations. Indeed, the localization of 
HOMO and LUMO patterns could be related to the next electronic- 
dependent behaviors of the structures, in which the models were 
found to work regarding the role of SUM surface adsorbent. This 
dominant role could be also very helpful for releasing the uploaded drug 
to a correct destination based on the customized electronic features of 
DUH-HYD complex and the corresponding electronic features of desti-
nation. This is indeed another description of sensor function of SUM for 
managing the future reactions and interactions of HYD drug substance. 

Additionally, analyzing the illustrated DOS diagrams (Fig. 4) could 
reveal insights into the measurements of molecular orbitals features 
variation during the conjugation formations to provide the required 
elements of approaching a sensing function for the investigating models. 
The results showed a significance of conjugated SUM-HYD complex 
formations based on the obtained electronic features and variations. 
Indeed, the exact levels of HOMO and LUMO and their energy distances 
are crucial to assess the electronic features of chemical systems. In the 
case of DOS diagrams, even the pre-HOMO and post-LUMO orbitals 
could be recognized and the energy gap distances could be determined 
regarding the sensing functions issues. Accordingly, measuring such 
variations could lead to an identification of adsorption process or even 
the type of complex formation. In this case, the models could be 
recognized from each other in both of complex states or between the 
singular and complex states. Additionally, a corresponding response to 
such an observed variation could lead to an identification of a significant 
model and the results could be affirmed based on the recorded changes 
and variations. For the investigated models, the DOS diagrams indicated 
shifting of HOMO and LUMO levels by the formation of SUM-HYD 
complexes, and also their variations were recorded to confirm the for-
mation of the type of SUM-HYD complex system. As a consequence, the 
expected sensor role of SUM was affirmed. 

For making a quantitative analyses of investigating models, the re-
sults of HOMO and LUMO related features were summarized in Table 3. 
The results included the exact energy values of HOMO and LUMO levels 
and their derived features as energy gap (Egap), chemical hardness (η), 
and chemical potential (μ) for both of singular and complex states of the 
investigated models. As the HOMO refers to the electron-containing 
orbitals and LUMO refers to the electron-vacant orbitals, the results of 
these parameters could help to recognize the electronic sensitivity 
especially in the case of electron transferring ability of a molecular 
system. For the case of conjugated complex formation, such electronic 
variations could lead to a detection point of drug uploading and also 
assigning a time of drug releasing. Based on such features, the values of 
Egap were found to be 8.29 eV for the SHi conjugation and 8.22 eV for the 
SHo conjugation in comparison with the singular SUM counterpart with 
a value of 8.32 eV. The results indicated a shorter energy distance be-
tween the HOMO-LUMO levels of conjugations in comparison with the 
singular SUM counterpart revealing the shortest distance for the SHo 
conjugation. On the other hand, the values of η revealed the lowest 
hardness or the highest softness for the SHo conjugation for participating 
in further reaction and interactions even more significant than the sin-
gular HYD substance. In this case, the models could be learned by their 
enhanced features in the conjugation state for working in the future 
processes. As a result, the SUM-HYD conjugations could lead to the 
generation of a new model system based on the evaluated structural and 
electronic features to propose a system for working in the novel drug 
design and delivery platforms for keeping the uploaded drug and mak-
ing the sensing functions. 

Thermochemistry features of the investigated SUM-HYD conjuga-
tions in different media were investigated by evaluating the Gibbs free 
energy of models in gas phase as the default set of calculations of this 
work, in water phase, and in ethanol phase (Table 4). The obtained re-
sults of ΔG indicated changes of the energy level in comparing media, in 
which the results of ΔG(Water-Gas) and ΔG(Ethanol-Gas) indicated the 
advantage of both of water and gas media for providing even more stable 
conjugations. However, it should be mentioned that the SHi conjugation 
showed even better situation than the SHo conjugation in both of water 
and ethanol media in comparison with the gas phase. Additionally, the 
values of ΔG(Water-Ethanol) indicated a higher suitability of water 
medium than the ethanol medium to obtain the conjugated systems. As a 
result, it could be mentioned that the investigated SUM-HYD conjuga-
tions could work in both of water and ethanol media with a priority of 
choice for the water medium in comparison with the ethanol medium. 
Additionally, because of easier penetrations of medium between the 
counterparts of out-side surface conjugation, the formation of SHi was 
found even better than SHo. As a final remark, not only the medium did 
not have an instability impact on the conjugations, but the impacts were 
even for making stronger complexes revealing the working function and 
applications of the conjugated models in all the gas, water, and ethanol 
media. 

Conclusions 

Computational assessments of sumanene-hydroxyurea (SUM-HYD) 
conjugations were done for proposing a novel drug design and delivery 
platform. DFT calculations were performed to stabilize the geometries of 
models in the singular state and their conjugated complex state. Two 
SUM-HYD conjugations were obtained including SHi and SHo, in which 
the in-side and out-side of semi-cup-like SUM for initiating the in-
teractions with the HYD substance were assigned by i and o indices. The 
results of energy features indicated a higher stability of the SHo conju-
gation in compassion with the SHi conjugation, in which the results 
indicated the existence of three interactions in the former conjugation 
and two interactions in the latter conjugation. Additionally, the non- 
imaginary IR spectra indicated stronger vibrations of HYD counterpart 
in the SHo conjugation in compassion with the SHi conjugation. Next, 
the electronic features were assessed by analyzing the frontier molecular 
orbitals for HOMO and LUMO levels and their derivatives. A shorter 
energy distance of HOMO and LUMO levels was found for the SHo 
conjugation and its hardness was accordingly lower making it a suitable 
substance for participating in further reactions and interactions even 
better that the singular HYD substance. Additionally, the HOMO and 
LUMO distribution patterns indicated a significant role of SUM sub-
stance for managing the conjugated system in terms of sensing functions. 
As a conclusion, the results of investigated SUM-HYD conjugations 
indicated highlighted benefits of these models for proposing to be 
employed in the novel drug delivery platforms. The evaluated impacts of 
media on the Gibbs free energy of SUM-HYD conjugations indicated the 
stability of models even in water and ethanol media in addition to the 
default gas phase of study. Moreover, the results indicated that the 
better stability of models in water medium than the ethanol medium. As 
a concluding remark, it should be mentioned that the investigated SUM- 
HYD conjugations could be proposed for working in drug design and 
delivery related functions, as the structures were found stable and their 
electronic features indicated possible sensing functions for making the 
whole process in a customized platform. 
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