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Abstract—Humans have had the ability to recognise items
for hundreds of years, possibly even since they first appeared on
Earth. All of the senses sight, smell, hearing, taste, and touch
play a role in helping humans determine what is in their
immediate vicinity. In order to integrate and make sense of the
information picked up by the senses, the brain receives signals
from those organs. Repetition of an experience has been shown
to improve cognition. The learned knowledge is put to use in a
wide variety of ways, from the mundane to the crucial, such as
in the areas of security, surveillance, traffic monitoring, and so
on. Human senses are limited to a relatively small range, and it
could be dangerous or even fatal to work in some settings. This
study provides a comprehensive evaluation of the many time-
frequency methods now in use for finding targets. Furthermore,
a unique method for detecting targets utilising an improved
time-frequency representation of the seismic data is outlined in
this research paper. When compared to solely time-domain or
frequency-domain methods, time-frequency domain analyses do
better. Because traditional time domain and frequency domain
analysis methods only reveal one aspect of a signal at a time,
time-frequency methods reveal both aspects at once.

Keywords: EWT; STFT; Seismic Signal; SPWV.

[. INTRODUCTION

Humans have had the ability to recognise items for
hundreds of years, possibly even since they first appeared on
Earth. Humans use their senses of sight, smell, hearing, taste,
and touch to determine the identities of things in their
immediate surroundings. Transmission of sensory organ
impulses to the brain allows for the latter's processing and
interpretation of the data. That's why repetition is so important
for learning [1]. The learned knowledge is put to use in a wide
variety of ways, from the mundane to the crucial, such as in
the areas of security, surveillance, traffic monitoring, etc. Due
to the short range of the human senses and the potential
dangers of working in some environments, this approach has
spatial and temporal constraints. Technology's rise has also
led to the development of increasingly sophisticated sensors
that can detect subtle shifts in their respective environments,
such as cameras, microphones, geophones, and other devices.
The processor module's computing skills also contribute to the
processing work at hand [2]. Moreover, machine learning
methods and processing on a highly computational framework
can accomplish automation. High-powered computers have
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made automation a no-brainer, and this has spawned
innovations like automatic target identification and
recognition. Without any help from a human operator,
automatic target detection and classification attempts to
identify the target. Meaningful information about the target
must be extracted from complex data. The following are some
of the main drivers in the evolution of autonomous target
recognition algorithms:

The method used to recognise targets, be it for detection,
tracking, or classification, varies from one application to the
next [3]. The complexity of target recognition algorithms is
increased by the fact that target recognition consists of
multiple stages, beginning with detection and progressing
through tracking and finally classification. The technique's
efficacy and practicality are both modified by the dimensions
of the target. Sizes can range from those of acroplanes to those
of tractors, buses, humans, and animals. Also, target size
variation adds another layer of difficulty.

Target identification and classification is a difficult task
that is heavily influenced by the surrounding environment. A
forest, city, or wide field, for example, would all work as
potential backdrops. As atmospheric obscuration increases, it
becomes more difficult to identify the target and more
variables are required to learn about it.

More than that, there are both military and civilian uses for
automatic target detection and categorization techniques, such
as in intelligent traffic systems, perimeter monitoring,
incursion detection, force protection, mediating animal-
human conflicts, etc. The gender of a person's footfall can be
predicted using target recognition techniques [4]. Feature
extraction from sensor data is the basis for automatic target
detection and classification methods. Active detection
techniques include sending out a signal into the environment
and then using the reflected signal to identify a target.

Over the course of more than a decade, research has been
conducted on sensing technologies for use in surveillance
applications, namely in the field of automatic target
recognition (ATR). Unmanned border area monitoring and the
early detection of suspicious movement are of the utmost
importance in vulnerable and restricted regions such as the
perimeter fencing of key installations. Other examples include
other sensitive and prohibited locations. Researchers have
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spent a significant amount of time labouring over the creation
of ATR systems. In the grand scheme of things, we want to
evaluate sensory input with digital computers in order to
automatically discover, localise, and recognise target
signatures. In other words, we want to do this with as little
help from humans as we possibly can [5]. The detection of any
movement in the surveillance area, whether that be of people
or vehicles, is the primary focus of this function. The sensory
data that has to be processed could have been generated by
any one of a wide variety of sensors, such as seismic, acoustic,
radar, or infrared sensors, amongst others. Within the scope of
this study, we will investigate the application of seismic and
auditory sensors for the purpose of identifying human
activities and moving vehicles. ATR would play a significant
part not just in lowering the cost of man-hours but also in
offering round-the-clock aided security without causing
employees tiredness and requiring nothing in the way of
upkeep. ATR systems place a premium on efficient data
gathering and encourage researchers to investigate a wide
variety of target signatures [6]. As a consequence of this, the
target signatures, regardless of whether they are seismic,
acoustic, optical, or magnetic, need to be processed
automatically in a manner that is both highly effective and
very inexpensive. As a result, the topic of autonomous target
detection is one that is not only interesting but also
demanding. One of the most important criteria is that the
system should generate a low number of false alerts while
maintaining a high detection rate. It has a wide range of
applications, including military surveillance as well as civilian
usage such as perimeter protection, remote sensing, traffic
monitoring, intelligent transportation systems, person
identification, and animal detection systems [7].

II. RELATED WORK DONE

Processing the seismic time-series signal in the time-
domain allows for the extraction of target information. In
order to locate and categorise the target, many time-domain
methods have been explored in the literature.

Target identification and categorization utilising the root-
mean-square (RMS) of the auditory and seismic signal was
proposed by the authors. The military base at Mappin,
Germany served as the test site for the experiment. In order to
generate train and test data, the five tracked and five wheeled
vehicles operate on the track at seven different speeds on four
lanes. Its root-mean-square (RMS) value is calculated using a
0.25-second timeframe. If the acoustic and seismic signal's
root-mean-square maxima exceed the threshold set by the
background noise, then tracked and wheeled vehicles are
detected [8]. After then, LVQ separates vehicles with wheels
from those with tracks. Combining auditory and seismic
modalities successfully distinguishes tracked from wheeled
vehicles in 94% of trials.

To do this, they suggested a time-domain feature
extraction method known as time encoded signal processing
and recognition [9]. TESPAR is used to convert a signal in the
time domain into a symbol stream. To begin, each epoch of
the time domain symbol stands alone. After that, we employ
two more characteristics: epoch shape (S) and duration (D).
The epoch's shape (S) reveals the occurrence of either local
minimums (in a positive epoch) or local maximums (in a
negative epoch). A standard icon is used to denote this specific
combination of shape and duration (D/S). As such, the symbol
stream serves as a representation of the signal in the time-
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domain. By counting how often each symbol appears in the
stream, we may create a matrix. The ANN receives this matrix
as input and uses it to identify different types of moving
ground vehicles. The proposed method has been used in an
offline setting; authors have not performed any real-time
analysis [10]. Classification of AAV and DW vehicles has
been implemented using the suggested technique on the
sitex02 dataset of DARPA.

Both the AAV and the DW can be accurately recognised
81% of the time by their respective auditory signals. When
using the seismic signal dataset, findings are not as promising,
although the AAV achieves 76% accuracy and the DW
vehicle achieves 72% accuracy [11].

The authors classified the ground target in motion using
seismic and acoustic sensors with the help of CART
(Classification and regression tree) and Gaussian mixture
model (GMM) as classifier. Sensor fusion is utilised to
determine the difference between wheeled and tracked
vehicles, and the likelihood acquired by GMM is fed into
decision trees of classification and regression tree (CART).
The algorithm's performance has been analysed, and a
comparison made with a previously published method, using
the accuracy metric [12]. To be more precise, GMM has been
shown to be more accurate than KNN and SVM classifiers.
The proposed approach yields an accuracy of roughly 94.10%.
When compared to using random nodes, accuracy improves
by 4.17 percentage points when employing group-level
fusion. When compared to other classifiers, the GMM's
complexity is lower [13].

Another method for extracting features in the time domain,
temporal domain harmonics' amplitude (TDHA) was
developed by the authors and published in the literature to
detect and categorise military vehicles. When classifying cars,
TDHA makes use of the signal's energy, harmonic
frequencies, and amplitude harmonics as attributes. In order to
test the efficacy of the suggested technique, it has been applied
to the BVP (Bochum Verification Project) dataset [14]. The
authors have characterised the effectiveness of their algorithm
by means of two metrics: detection and false alarm rate. The
proposed method has been analysed side-by-side with the
spectral method. It has been demonstrated that TDHA requires
less computer power than spectral analysis. The proposed
algorithm has a classification accuracy of 90.38 percent [15].

The researchers used the dynamic data driven application
system as the classifier and symbolic dynamic filtering (SDF)
as the feature extraction technique to categorise the ground
target as it moved. Different types of moving ground targets,
including humans, animals, and vehicles, have been utilised
by the writers. It's important to keep in mind that sensor
readings might be influenced by things like weather, time of
day, and daylight. As a result of factors such as temperature
and mechanical stiffness, the geophysical sensors are affected
by what is referred to as context [16]. The static classifiers
may underperform because of the varying contexts. Therefore,
authors employed context knowledge as feedback to
adaptively select the classifier to boost system performance.
The authors calculated the algorithm's effectiveness using
accuracy as the metric to measure success, and they've utilised
a box plot to display the correlation between the amount of
symbols in each modality and the algorithm's success in
classifying them. The authors demonstrate an accuracy of
80% for a seven-letter alphabet. Using accuracy as a metric,
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we have compared the algorithm's performance both in and
out of context [17].

One of the most important responsibilities for UGS
systems is the selection of sensor modalities. On military
battlefields, UGS has been utilised for the purposes of remote
target detection, localisation, and recognition. The signal data
that has to be processed could have been generated by any one
of a wide variety of sensors, including seismometers, acoustic
sensors, magnetometers, radar, electro-optical sensors,
passive infrared sensors, and infrared imaging sensors, to
name just a few [18]. Because they don't rely on line of sight,
omnidirectional sensors, such as seismic and acoustic based
sensors, have a significant advantage.

Recent research has shown that one of the most essential
topics to investigate is the monitoring of places that have
seismic activity. For the purpose of passively sensing
vibrations that are transmitted via the ground, seismic sensors
that convert mechanical ground waves into electrical voltages
are utilised. Rayleigh surface waves are the form in which
seismic waves that are propagated within the ground when
they are caused by anthropogenic activities or the movement
of vehicles. The displacement of the earth medium caused by
the wave's propagation is what the seismic sensor picks up on.
Geophones and accelerometers are the two types of seismic
sensors that are utilised most frequently for applications of this
nature [19]. Accelerometers and geophones have been utilised
in the process of identifying various sorts of heavy civilian
vehicles as well as military vehicles. They can be utilised as a
cue in conjunction with other sensors that are either auditory
or electro-optical to detect or categorise targets.

One variety of seismic sensor, known as a geophone, is
one that is totally buried in the earth and is therefore less
susceptible to being impacted by the weather. A moving coil
is supported by a spring and encircled by a magnet in this
design. The coil moves whenever there is a vibration, which
causes it to create a voltage that is proportionate to the speed
at which the ground is vibrating. The geophones that are most
frequently utilised have resonance frequencies of 10 Hz, 28
Hz, and 40 Hz respectively. Research based on geophone
sensors had previously been put to use in a variety of
applications, including the identification of approaching
vehicles and people in seismic signals. General Sensing
Systems (GSS) has conducted research and developed
methods for the detection of seismic footstep utilising
geophone sensors as part of an intrusion detection system [20].
Research has been carried out while taking into account a wide
variety of factors, including the weather, the time of day, and
the various categories of targets.

Microphones, which are a type of acoustic sensing device,
are most generally known for their ability to convert pressure
waves into electrical voltage. The speed at which acoustic
waves travel through air is roughly 345 metres per second. It
is also common knowledge that when there is a windy
condition, acoustic waves lose the coherency of their wave
propagation beyond a few tens of feet, which results in a
degradation of the coherent processing of data [21]. In the case
of seismic sources, the speed of propagation can change, and
this change is determined by the geology of the surface. As a
result of the proximity of the sensors to the source of the
sound, two situations are created.

In recent years, there has been an increase in the utilisation
of the joint time-frequency domain for the processing of
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signals. This is due to the fact that the TFDs contain more
information regarding non-stationary signals [22]. These can
also be modelled as different kinds of probability distribution
functions.

The Wigner-Ville Distribution is used for the
decomposition and characterization of seismic signals
(WVD). On temporal frequency diagrams (TFDs) of
biomedical and seismic time series data, entropy-based
detection has been applied. Using seismic sensors and infrared
imageries, a further pseudo-Wigner Ville distribution
supplemented by Rényi entropy (PWVD-RE) has been
employed with the CFAR detector to detect civilian vehicles.
A signal's time-frequency distribution is a representation of
the signal in three dimensions, including the time dimension,
the frequency dimension, and the amplitude dimension [23].
Its primary use is to identify transitory occurrences within a
signal.

III. THE PROPOSED WORK

This manuscript provides a comprehensive study of the
many time-frequency methods currently in use for finding
targets. In addition, an unique method for detecting targets
utilising an improved time-frequency representation of the
seismic signal is described in the research. When compared to
solely time-domain or frequency-domain methods, time-
frequency domain analyses emerge victorious. Because time
domain and frequency domain analysis techniques supply
only time and frequency information, whereas time-frequency
approaches bring out both time and frequency information of
the signal simultaneously. Thus, this chapter describes the
various time-frequency approaches for target detection
utilising seismic signal processing that have been presented in
the literature.
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Fig. I. Time domain non-stationary signal combination of four Gaussian
wave packets.

With the SPWVD, you can independently tweak the time
and frequency resolutions for enhanced cross term
suppression. There are many possible window functions; we
have used the Hamming window in this investigation because
of its ability to operate in both the temporal and frequency
domains. Absolute values of the time-frequency coefficients
of the signal calculated using the Smooth Pseudo Wigner-
Ville Distribution (SPWVD) are displayed in Fig. 2 below.

By recasting the non-stationary signals in a time-
frequency domain using the SPWVD, we can do away with
any cross terms or interference that may otherwise be there.
Getting rid of these cross terms is a great help when trying to
decode a seismic signal. Scientists have investigated SPWVD
for a wide range of mechanical and biomedical applications,
including: the mitigation of motion artefact in pulse oximetry,
the differentiation between heart sounds with and without
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aortic stenosis, and the identification of rotor faults in
brushless DC motors. Consequently, time-frequency
coefficients based on SPWVD are investigated for extracting
data about a ground target in motion. Positive and negative
coefficients are used in SPWVD, making the coefficients
complex numbers. Due to this, these coefficients can't be
utilised as a P.D.F. (probability density function) in isolation
(PDF). Therefore, the SPWVD coefficients need to be
transformed into PDF format in order to be used in any
subsequent study.
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Fig. 2. Absolute value of Smooth Pseudo Wigner-Ville distribution
(SPWVD) based time frequency coefficients of the signal.
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Fig. 4. SPWYVD based Event detection results for AAV vehicle.

Event detection, represented by the pink dashed line, is
depicted as having a binary state based on the result of a
comparison between the CFAR threshold and the Renyi
entropy.

The criterion of voting percentage with respect to CFAR
threshold is met if and only if the presence or arrival of the
moving ground vehicle is identified at roughly the time instant
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of 60s. This is because the threshold condition is met as the
seismic signal strength grows relative to the noise strength,
leading to an increase in the localised entropy value. The pink
dashed line indicates the time period during which the ground
target can be detected while still in motion. Results from a
detection study using STFT-based time-frequency analysis
are compared with those obtained using the same seismic data.

TABLE L. EVALUATION PARAMETERS-BASED COMPARISON OF

SPWVD WITH STFT ALGORITHM.

True Positive False Positive
Det?ction Rate Rate F-Score
Time  “cpwyp | STFT | SPWVD | STFT | SPWVD | STFT
0.1 042 | 045 | 0037 | 0039 | 05 0.53
0.2 062 | 057 | 0051 | 0042 | 068 | 0.62
03 075 | 062 | 0061 | 0043 | 074 | 068
0.4 083 | 065 | 0083 | 0063 | 0.78 08
0.5 089 | 072 | o.11 0.05 078 | 0.82
0.6 0.91 073 | 012 | 0064 | 08 0.85

B True Positive
Rate SPWVD

TPR

H True Positive
Rate STFT
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Detection Time

Fig. 5. TPR evaluation comparison for SPWVD with STFT.
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Fig. 6. FPR evaluation comparison for SPWVD with STFT.
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Fig. 7. F-Score evaluation comparison for SPWVD with STFT.
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SPWVD's TPr is only a little lower than STFT's for small
data packet sizes, but it's over 19% higher for larger packets,
such as 0.6s. When the size of a data packet is increased, the
corresponding Detection Time remains constant at about 0.6,
and the corresponding STFT remains about 0.74. As higher
TPr is usually desirable for any detection algorithm, it is
inferred that larger Detection Time window size is better for
the proposed detection technique. Similarly, FPR roughly 8%
higher in comparison with STFT for Detection Time window
size of 0.6s. A higher sensitivity correlates with a higher
detection rate, but it does not explain the correspondingly
greater false positive rates. F-score findings for time-
frequency analysis approaches are displayed in Fig. 7; they
demonstrate an improvement of roughly 8% above STFT for
a 0.5s Detection Time window size.

IV. CONCLUSION

Seismic time-series signal analysis for the identification of
moving ground targets has been a topic of intense study for a
long time, owing to the wide range of potential military and
civilian applications of this technique. Whether it's tracked or
on wheels, the passage of a vehicle along a path causes seismic
activity. Therefore, provide information that can be used in the
identification of a possible target. While there are many
feature extraction methods available, time-frequency analysis
has shown the most promise for accurately pinpointing the
location of seismic events with very little chance of a false
positive. In this section, we provide a smooth-pseudo-Wigner-
Ville distribution (SPWVD)-implemented time frequency
analysis for seismic event identification. SPWVD provides a
more accurate depiction of the time-frequency coefficients by
using two window functions to cancel out cross-term
interference along both the time and frequency axis. Based on
this transformed probability distribution function, Renyi
entropy is calculated as a regional index of seismic activity.
The CFAR threshold on Renyi entropy, which automatically
modifies the detection threshold, guarantees the arrival of a
potential seismic event. The suggested technique was tested
using a dataset that included the seismic footprints of both
tracked and wheeled vehicles. Improved detection algorithm
performance, as measured by F-score and lead time (Tlead),
has been attributed to the use of SPWVD due to its superior
noise suppression capabilities.

REFERENCES

S. Kumar, R. Vig, and P. Kapur: Development of Earthquake Event
Detection Technique Based on STA/LTA Algorithm for Seismic Alert
System, J. Geol. Soc. India, vol. 92, no. 6, pp. 679-686, (2018), doi:
10.1007/s12594-018-1087-3.

J. Gou, L. Du, Y. Zhang, and T. Xiong: A new distance-weighted k-
nearest neighbour classifier, J. Inf. Comput. Sci, vol. 9, no. 6, pp. 1429—
1436, (2012).

F. Riaz, A. Hassan, S. Rehman, I. K. Niazi, and K. Dremstrup: EMD-
based temporal and spectral features for the classification of EEG
signals using supervised learning, IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 24, no. 1, pp. 28-35, (2015).

T. Wang, M. Zhang, Q. Yu, and H. Zhang: Comparing the applications
of EMD and EEMD on time—frequency analysis of seismic signal, J.
Appl. Geophys., vol. 83, pp. 29-34, (2012).

G. Jin, B. Ye, Y. Wu, and F. Qu: Vehicle classification based on
seismic signatures using convolutional neural network, IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 4, pp. 628-632, (2018).

A. Schmidt, C. Riigheimer, F. Particke, T. Mahr, H. Appel, and H.-G.
Kolle: Kurtosis based approach for detection of targets in noise, in 2016
17th International Radar Symposium (IRS), Krakow, Poland, pp. 1-3
(2016).

S. Mohine, B. S. Bansod, P. Kumar, R. Bhalla, and A. Basra: Single
Acoustic Sensor-Based Time—Frequency Spectrum Sensing Approach

(1]

(2]

(31

[4]

694

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

for Land Vehicle Detection, IEEE Sens. J., vol. 20, no. 13, pp. 7275—
7282, (2020).

A. Akula, N. Khanna, R. Ghosh, S. Kumar, A. Das, and H. K. Sardana:
Adaptive contour based statistical background subtraction method for

moving target detection in infrared video sequences, Infrared Phys.
Technol., vol. 63, pp. 103-109, (2014).

R. Ghosh, A. Akula, S. Kumar, and H. K. Sardana: Time—frequency
analysis based robust vehicle detection using seismic sensor,” J. Sound
Vib., vol. 346, pp. 424434, (2015).

S. Anchal, B. Mukhopadhyay, and S. Kar: Person Identification and
Imposter Detection using Footstep generated Seismic Signals,”, in
IEEE Trans. Instrum. Meas., vol. 70, pp 1-11, (2021).

Pei, J.; Huang, Y.; Liu, X.; Yang, J.; Cao, Z.; Wang, B.: DPCA-based
Two-dimensional Maximum Interclass Distance Embedding for SAR
ATR. In Proceedings of the 2013 International Conference on
Communications, Circuits and Systems (ICCCAS), Chengdu, China,
15—17 November; Volume 1, pp. 267-270 (2013).

Zhang, H.; Nasrabadi, N.; Zhang, Y.; Huang, T.S. Multi-View
Automatic Target Recognition using Joint Sparse Representation.
IEEE Trans. Aerosp. Electron. Syst., 48, 2481-2497 (2012).

Chen, S.; Wang, H.; Xu, F.; Jin, Y.-Q. Target Classification Using the
Deep Convolutional Networks for SAR Images. IEEE Trans. Geosci.
Remote Sens., 54, 4806-4817 (2016).

Wagner, S.A. SAR: ATR by a combination of convolutional neural
network and support vector machines. IEEE Trans. Geosci. Remote
Sens., 52, 2861-2872 (2016).

J. Rivas, R. Wunderlich, and S. Heinen: Road vibrations as a source to
detect the presence and speed of vehicles, IEEE Sensors Journal, vol.
17, no. 2, pp. 377-385, (2017).

S. Gabarda and G. Cristobal: Detection of events in seismic time series
by time—frequency methods, IET Signal Processing, vol. 4, no. 4, p.
413, (2010).

A. E. Faghfouri and M. B. Frish: Robust discrimination of human
footsteps using seismic signals, in SPIE Defense, Security, and
Sensing, pp. 80460D1-80460D-9: International Society for Optics and
Photonics (2011).

D. Powers: Evaluation: from precision, recall and f-measure to roc.,
informedness, markedness & correlation, Journal of Machine Learning
Technologies, vol. 2, no. 1, pp. 37-63, (2011).

V. Bisot, S. Essid, and G. Richard: HOG and subband power
distribution image features for acoustic scene classification, in Signal
Processing Conference (EUSIPCO), 2015 23rd European, , pp. 719-
723: IEEE (2015).

A. Mjahad, A. Rosado-Muiloz, M. Bataller-Mompean, J. Francés-
Villora, and J. Guerrero-Martinez: Ventricular Fibrillation and
Tachycardia detection from surface ECG using time-frequency
representation images as input dataset for machine learning, Computer
methods programs in biomedicine, vol. 141, pp. 119- 127, (2017).

Nair, R., Ragab, M., Mujallid, O. A., Mohammad, K. A., Mansour, R.
F., & Viju, G. K. (2022). Impact of wireless sensor data mining with
hybrid deep learning for human activity recognition. Wireless
Communications and Mobile Computing, 2022.

A. Akula, R. Ghosh, S. Kumar, and H. K. Sardana: Wigner MSER:
PseudoWigner Distribution Enriched MSER Feature Detector for
Object Recognition in Thermal Infrared Images, IEEE Sensors Journal,
pp. 1-1,(2019).

Sharma, T., Balyan, A., Nair, R., Jain, P., Arora, S., & Ahmadi, F.
(2022). ReLeC: A Reinforcement Learning-Based Clustering-
Enhanced Protocol for Efficient Energy Optimization in Wireless
Sensor Networks. Wireless Communications and Mobile Computing,
2022.

Authorized licensed use limited to: Zhejiang University. Downloaded on October 01,2023 at 18:03:51 UTC from IEEE Xplore. Restrictions apply.



