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A B S T R A C T   

Finding a suitable sensing material for NH3 has been considered to be scientifically important. In order to 
thoroughly understand the possibility of using a B3S monolayer (B3SML) as a sensor for detecting NH3, the 
adsorption behaviors, optical, gas sensing and electronic attributes of NH3 and other gas molecules were 
inspected on the B3SML by performing DFT calculations. Based on the results, the gas sensing performance of the 
pristine B3SML in detecting NH3 was good. Also, the results on the adsorption behaviors (adsorption modes, 
geometric structures and adsorption energies), optical/electronic attributes, electron density differences and 
charge transfer indicated the potential application of the B3SML as a NH3 sensor. Overall, the B3SML can be 
regarded as an ideal sensing material to detect NH3. The current work can provide insights into the interactions 
between gases and surfaces, which can be conducive to developing two-dimensional materials for detecting NH3.   

1. Introduction 

One of the detrimental threats to the humans and the environment is 
the release of toxic gasses from different sources such as chemical and 
combustions reactions as well as industrial factories. One of these gasses 
and compounds which is used in manufacturing chemicals and indus
trial cleansing is ammonia (NH3) [1–4]. Furthermore, NH3 has wide
spread application in diagnosing various diseases such as lung cancer, 
malignant tumors, kidney diseases and diabetes. In spite of its benefits, 
the toxicity of NH3 is high, which can be detrimental to the human life. 
For instance, people who are exposed to 25 ppm of this gas suffer from 
lung, eye and skin irritations [5]. Also, a high concentration of NH3 can 
be poisonous [6]. So, monitoring and detecting NH3 and its concentra
tion are considered significant, which necessitates the urgent develop
ment and design of promising materials for its detection. 

In recent years, following the successful exfoliation of graphene (Gr) 

thanks its unique attributes, including high chemical stability, low 
electronic temperature noise and high mobility [7–22], two- 
dimensional (2D) nanomaterials have been employed as ideal sensors 
for the detection of various gasses [7–19,23–26]. Nevertheless, pure Gr 
lacks a bandgap, which limits its application as a suitable gas sensor. 
One of the most promising types of materials for chemical sensors are 
two-dimensional (2D) ones. Their unique properties, such as high sur
face to volume ratio, tunable conductivity, high sensitivity, selectivity, 
reversibility, and stability, make them ideal candidates for gas sensing 
applications. Graphene, in particular, is a promising gas sensing material 
due to its high surface area and high conductivity [27]. It has recently 
been used for detecting a variety of gases, such as NO2, H2, CO, SO2, and 
S [28–33]. Other 2D materials, such as BN [34], C3N [35], and carbon 
nanostructures [36–39], have also been studied for NH3 detection, with 
mixed results. The studies show that NH3 interacts weakly with the 
monolayers of these materials. One of the effective ways of improving 
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the gas sensing attributes of 2D materials is substitutional doping 
[8–10]. As an instance, B2S [40], C2N [41–43], siligraphene [44–46], 
and [1,1] paracyclophane [47] are common 2D materials ideal for 
hydrogen storage materials. Nevertheless, the gravimetric density and 
hydrogen adhesion energies of most pure 2D materials are low, limiting 
their application as a hydrogen storage material [48–52]. To solve this 
problem, researchers have functionalized them using metals such as Ti, 
Sc, Ca and Li [40,44,53–58]. Here, the metal atoms are adhered chem
ically onto these materials for increasing the adhesion strength of 
hydrogen molecule. Li-decorated B2S [40], C2N [42] and triphenylene- 
graphdiyne [59], Ti-decorated Gr [55], B2C [60], and 4-tert-butylcalix 
[61] arene [62], and Mg-decorated C2N monolayer [63] are among 
ideal hydrogen storage materials. Researchers have recently used the 
particle swarm optimization (PSO) algorithm in order to design a Gr-like 
B3S monolayer (B3SML). They demonstrated that B3SML is thermally, 
mechanically and dynamically stable with a higher cohesive energy in 
comparison with other isomers [64]. The fascinating structure of the B3S 
monolayer is stabilized by a sulfur atom to form a honeycomb structure, 
resembling graphene, silicene, germanene, and stanene. One notable 
difference is that boron has one fewer electron than group 14 elements 
[64]. 

Within the current study, the optoelectronic attributes and the 
adhesion behaviors of gas molecules were investigated over the most 
stable B3SML to investigate its potential application as a sensor for 
detecting NH3 by performing DFT calculations. Based on the results, the 
NH3 sensing performance of the pristine B3SML was good. 

2. Computational details 

Using the basis set 6-31G (d) and the functional B3LYP within 
GAMESS program, energy optimizations, full geometry, of the pristine 
B3SML were performed [65]. To increase the accuracy of computations, 
particularly noncovalent interactions, we added the empirical disper
sion term, B3LYP-D3. The above-mentioned basis set has been 
commonly used in the experimental synthesis of nanostructures [66,67]. 
Moreover, it can provide reliable and accurate calculational results 
regarding III–V semiconductors [68]. The convergence criterion for the 
self-consistent field (SCF) has been set to 10− 6 for the optimizations. In 
addition, to ensure reliable results, structural changes were limited, with 
a maximum displacement of one coordinate set to 1.8 × 10− 4 and an 
average (RMS) change of 1.2 × 10− 4 overall structural parameters. The 
maximum remaining force on an atom and the average root mean square 
(RMS) force on all atoms have also been set to 4.5 × 10− 4 and 3.0 ×

10− 4, respectively. The DOS analysis was performed using the GaussSum 
program [69]. We also computed the electron density difference (EDD) 
and the Hirshfeld method was adopted to compute the charge transfer 
between the B3SML and the gas molecules. 

Moreover, the adhesion energy was computed as follows: 

Eads = Etotal − EB3S − Egas (1) 

Here, Etotal is total energy of the gas molecule adhered onto the 
pristine B3SMLEB3S representsthe energy of the pristine B3SML and Egas 
represents the energy of the adhered molecules. Here, a negative value 
demonstrated the exothermic nature of the adhesion. 

3. Results and discussions 

3.1. The adhesion of molecules onto the pristine B3SML 

As shown in Fig. 1a, the B3SML was optimized. Having a lattice 
constant of a = 5.27 Å and b = 6.08 Å, the B3SML contains an orthogonal 
primitive cell. B-B and B-S bonds, respectively, had a length of 
1.663–1.681 Å and 1.820–1.849 Å, whereas the bond angles of B-B-B, B- 
B-S and B-S-B, respectively, were 126.1◦, 113.9◦ and 120◦. Based on its 
structural properties, the B3SMML is anisotropic. The electronic prop
erties of the B3SML are shown in in Fig. 1b. The B3SML possesses 
metallic attributes since its valence band passes via the Fermi level (FL). 
The findings obtained on the B3SML are similar to those obtained in the 
literature [64]. 

Next, the adhesion of NH3 onto the pristine B3SML was investigated 
to examine the gas sensing attributes of the pristine B3SML. Fig. 2 shows 
the most stable configuration of NH3 adhered onto the B3SML. The NH3 
molecule had a chemical adsorption onto the B3SML in both B and S site 
and the adhesion energy were − 0.247 and − 1.079 eV for S and B sites 
(Table 1), respectively. Moreover, the chemical adsorption of NH3 
dramatically changed the electronic attributed of the B3SML, thus 
leading to a significant amount of charge transport (0.204 e) between 
B3SML and NH3. Based on the results, the pristine B3SML can be 
considered a promising sensor to detect NH3. In comparison with other 
two-dimensional nanosheets used as ammonia sensors, the B3S nano
sheet demonstrates higher absorption energy. Additionally, the changes 
in the bandgap after ammonia absorption are also greater in the present 
work compared to other two-dimensional compounds (see Table 3). 

Furthermore, the adhesion of other molecules such as H2O, CO2 and 
CH4 were investigated on the B3SML, and the results were given in 
Table 2. All of these molecules had a physical adhesion on the 

Fig. 1. (a) The optimized structure of B3SML, (b) density of states (DOS), respectively. The reed dotted line shows the Fermi level.  
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monolayer since the adhesion energy was small, the charge transport 
was negligible, and there was no structural deformation. More impor
tantly, the physical adhesion of these molecules did not significantly 
change the optoelectronic and magnetic attributes of the B3SML, apart 
from H2O. As shown in Table 2, the workfunction of the B3SML changed 
to 4.170 eV following the physical adhesion of H2O, which indicated 
that the physical adhesion of H2O changed the attributes of B3SML. 

3.2. Analysis of electronic attributes 

Here, the electronic attributes such as DOSs and band structures of 
the most stable CFG of NH3 on the B3SML were explore to understand the 
interactions between NH3 and the B3SML (see Fig. 3). In comparison to 
the electronic attributes of the pristine B3SML, the adhesion of NH3 
altered the electronic attributes of the B3SML. As shown in Fig. 3, for the 
structure of NH3-BS3 3, NH3 not only introduced fully occupied states at 
~− 6.7 eV under the FL in the valence bands, but also resulted in some 
impurity states at ~2.5 eV above the FL in the conduction bands (CBs), 
resulting in robust interactions between NH3e and B3SML, In line with 
the adhesion energies. Furthermore, the adhesion of NH3 changed the 
bandgap of NH3-B3S to 0.547 eV. This was larger compared to the 
bandgap of the pristine B3SML, which indicated that the bandgap was 
enlarged after the adhesion of NH3. Similar properties have been found 
for the adhesion of molecules and atoms onto group-IV monolayers [70]. 
The valence band is the highest energy band in a solid material 

Fig. 2. Top and side views of the most stable configurations for the pristine B3SML adsorption with NH3 molecule.  

Table 1 
Adhesion energies (Eads), charge transport from the B3SML to every molecule 
(ΔQ), bandgap widths (Eg), and workfunction (Ф) for the structures of NH3 
adhered onto B3SML.  

Parameter B3S B3S-NH3 (S site) B3S-NH3 (B site) 

Eads (eV) –  − 0.427  − 1.079 
ΔQ (e) –  − 0.109  0.204 
Eg (eV) METAL  0.302  0.547 
Ф (eV) 4.298  4.012  3.706  

Table 2 
Adhesion energies (Eads), charge transport from the B3SML to every molecule 
(ΔQ), bandgap widths (Eg), and workfunction (Ф) for the structures of molecules 
adhered onto B3SML.  

Molecules Eads (eV) ΔQ (e) Eg (eV) Ф (eV) 

CH4  − 0.193  0.041  METAL  4.298 
CO2  − 0.213  0.067  0.168  4.285 
H2O  − 0.384  0.056  0.233  4.170  

Table 3 
Adhesion energies (Eads), charge transport and Eg of version 2D material sensor 
for NH3.  

System Eads (eV) Q (e) Eg (eV) Ref 

B3S  − 1.079 − 0.109 0.547 This work 
Siligene  − 0.67 – – [74] 
Germanene  − 0.39 – – [75] 
Stanane  − 2.48 − 0.017 0.75 [76] 
MoTe2  − 0.24 − 0.03 1.10 [77]  
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containing valence electrons, while the Fermi level is the energy level at 
which there is a 50 % chance of finding an electron. The metallic 
properties of solid materials are closely related to the activity of valence 
electrons and the Fermi level. In metals, the valence bands overlap with 
the conduction bands, creating a continuous range of energy levels 
available for electrons to move through the material. This results in 
excellent electrical conductivity and excellent mobility. The Fermi level 
in metals lies in the overlap of the valence conduction bands and is 
closely related to the density of states at the Fermi level. High density of 
states at the Fermi level leads to high electrical conductivity and metallic 
properties. Additionally, changes in metal properties, such as conduc
tivity or resistance, can be attributed to changes in the Fermi level due to 
external factors such as temperature or doping. Therefore, the Fermi 
level plays an important role in understanding the behavior of metallic 
materials. The adhesion of NH3 induced some impurity states in the CBs 
by the FL and, most significantly, there was a shift in the FL into the 
initial CBs, which led to a change from conducting into semiconducting 
behaviors because of the adhesion of NH3, which is one of the suitable 
properties for the application in sensors. 

As shown in Fig. 4, the EDDs were computed and plotted for the most 
stable CFGs of NH3 adhered onto the B3SML. Useful information can be 
obtained based on the EDDs regarding the change transport between the 
B3SML and NH3. Electrons were transferred from the NH3 to the B3SML 
after the adhesion of NH3 onto the B3SML. The results obtained agree 
well with those of the Hirshfeld charge analysis. In comparison to the 
EDD of B3SMLwithout the adhesion of NH3, there was a reshuffling of 
electron densities surrounding the interaction regions between NH3 and 
the B3SML, which indicated that there was a robust interaction between 
NH3 and B3SML. 

We can define the workfunction (Φ) as follows: 

Φ = Evac − EF (2) 

Here, the FL energy and vacuum energy level are designated by Evac 
and EF, respectively. One of the parameters in evaluating the possibility 

of using materials as gas sensors is the workfunction [19,31,36]. of the 
workfunction of the B3SML was 4.298 eV. The workfunction computed 
for different molecules is provided in Tables 1 and 2. Following the 
chemical adhesion of NH3, the workfunction of the B3SML decreased 
3.706 eV, which indicated the prevention of electron transport to the 
vacuum level. Nonetheless, the workfunction did not change after the 
physical adsorption of CH4, CO2, and H2O onto the B3SML and the 
physical adsorption of NH3 onto B3SML. Hence, the selective adhesion of 
NH3 could change the workfunction of the B3SML, thus making it a 
suitable gas sensor. 

3.3. ELF analysis 

Becke and Edgecombe developed the Electron Localization Function 
(ELF) concepts for atomic and molecular systems as a complement to 
Silvi and Savin’s ELF attractors for chemical bonds. In this study, the ELF 
was examined using bond critical points (BCPs) localization in all active 
sites [71]. The ELF maps were generated using B3LYP-D3 and displayed 
in Fig. 5, calculated along the (YZ) plane. The results showed that 
electron localization was highest at the upper edge level, where the S 
atom was located. The graph revealed that critical points localized be
tween the N and S atoms had the greatest electron localization in 
bonding regions. These findings support the presence of non-covalent 
interaction forces between B3S and NH3 gas. 

3.4. Recovery time 

Recovery time (RT) of sensing materials is another important crite
rion in evaluating the performance of a gas sensor. Based on the tran
sition state theory, there is a relationship between the adhesion energy 
and recovery time (τ) as follows: 

τ = ν− 1
0 e− Eads/kT (3)  

where T, k, and ν0, respectively, are the temperature, Boltzmann 

Fig. 3. The density of states (DOS) for NH3 adsorbed on B3SML.  
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constant and the attempted frequency. According to this equation, the 
higher the adhesion energy, the longer the RT [72]. The RT could be 
obtained at 300 K for ν0 = 1012 s− 1. The RT of the B3SML for NH3 was 
5.6 × 1015 s at 300 K. This was too long for preventing NH3 to desorb 
from the B3SML, i.e., a long RT can prevent the reusability of sensors to 
detect NH3. According to Schedin et al., Gr-based sensors can be 
recovered to their initial geometries at 423 K through annealing within 
the RT of 100–200 s [73]. So, the RT was computed at 400 K. The RT of 
the B3SML was between 0.389 s at 400 K. Based on the results, by raising 
the operating temperature we can overcome a long RT. 

4. Conclusion 

To thoroughly understand the potential of employing the B3SML as a 
sensor for detecting NH3, the adsorption behaviour, optical, gas sensing 
and electronic attributes of NH3 and other gas molecules were checked 
over the B3SML through DFT calculations. Based on the results, NH3 had 
a chemical adhesion on the pristine B3SML with a significant amount of 
adhesion energy and charge transport, which indicated that the gas 
sensing performance of B3SML was good. The chemical adhesion 
significantly altered the optoelectronic attributes of the B3SML. In 
addition, CH4, CO2 and H2O had a physical adhesion onto the B3SML and 

Fig. 4. The electron density difference for NH3 adsorbed on B3SML.  

Fig. 5. The ELF map for NH3 adsorbed on B3SML.  
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negligibly changed the optoelectronic attributes of the B3SML. The 
theoretically obtained results suggested that the B3SML was a promising 
candidate for NH3 sensors. 
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