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A B S T R A C T   

In the present study, TiFe2O4@SiO2–SO3H heterogeneous catalyst was successfully synthesized 
and applied to generate biodiesel from oleic acid, and palmitic acid using an esterification pro
cess. In this sense, the nanocatalyst surface was characterized using TEM, TGA, XRD, FTIR, VSM, 
BET, SEM, and EDX analyses. Nanocatalyst TiFe2O4@SiO2–SO3H showed high activity for the 
esterification of oleic acid and palmitic acid. Also, the nanocatalyst can be easily recovered with a 
bar magnet and reused many times without any loss of activity.   

1. Introduction 

Esterification of alcohols with carboxylic acids has recently attracted the attention of scientists for the industrial production of 
useful chemicals such as perfumes, biodiesel, polymers, solvents, etc. [1–4]. In the next decade, due to the reduction of non-renewable 
fossil fuels and energy consumption, biodiesel will be a suitable alternative in the industry [5] [–] [8]. Biodiesel is a renewable, clean, 
sulfur-free, and sustainable fuel derived from monoalkyl esters of fatty acids. Biodiesel is usually produced by the esterification of fatty 
acids in non-edible or edible oils with primary alcohols using basic or acidic catalysts [9,10]. Also, esterification of free fatty acids such 
as palmitic acid and oleic acid in incompatible raw materials before using basic catalysts is important for the transesterification re
action due to soap formation, therefore acid nanocatalysis is more suitable for biodiesel production [11]. Therefore, using an acid 
catalyst, environmentally friendly and green biodiesel can be produced from palmitic acid and oleic acid [12,13]. 

The development and research of green and efficient nanomaterials as catalyst supports is a big challenge in the synthesis of organic 
compounds [14] [–] [16]. In the last decade, magnetic nanoparticles have been recognized as excellent supports due to their easy 
preparation and operation, and high surface area, easy recovery by the magnetic field, which will lead to increased product purity [17, 
18]. Also, the most important advantage of magnetic nanoparticles is their separation from the reaction mixture with the help of a bar 
magnet [19]. Among the heterogeneous nanocatalysts, TiFe2O4 has received much attention due to its simplicity in the synthesis 
method and easy separation using magnets [20,21]. However, various catalysts can be supported on TiFe2O4 nanoparticles, because 
they can be easily separated after several consecutive uses in the reaction [22,23]. 

In this work, we report the synthesis and structural characterization of a green and novel catalyst and investigate their utility as a 
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green and efficient catalyst in Biodiesel Production. Compared to previously reported catalysts, this solid acid catalyst showed better 
catalytic performance. 

2. Experimental 

2.1. Preparation of TiFe2O4@SiO2–SO3H 

To synthesize the TiFe2O4 NPs, 10 mmol of Titanium isopropoxide (C12H28O4Ti) and 20 mmol of FeCl3.4H2O were prepared and the 
mixture was maintained at 70 ◦C water bath for 30 min. Next, 5 g of sodium hydroxide was added and the mixture was stirred. The 
resulting particles were harvested, washed several times using H2O, and dried at 100 ◦C (Scheme 1). Next, 2.0 g of the obtained 
TiFe2O4 was dispersed in a mixture of ethanol (70 mL), 10.0 mL of ammonia solution, 20 mL of H2O, followed by the addition of 5 g of 
PEG, and 2.5 mL of TEOS (tetraethyl orthosilicate). This solution was stirred for 24 h at room temperature. Also, the product 
(TiFe2O4@SiO2) was separated using a simple magnet washed several times with ethanol and water, and dried at room temperature. 
Finally, to prepare the TiFe2O4@SiO2–SO3H catalyst, a mixture of TiFe2O4@SiO2 (2.0 g) was dispersed in 100 ml of hexane in a round- 
bottomed flask. In the next step, 0.3 g of chlorosulfonic acid was added drop by drop to the reaction vessel and finally stirred at 25 

◦

C 
for 24 h. Next, after completion of the reaction, the final catalyst (TiFe2O4@SiO2–SO3H) was separated and washed with H2O and 
ethanol and, dried under vacuum at 55 ◦C (Scheme 1). 

2.2. Biodiesel production 

The catalytic activity of TiFe2O4@SiO2–SO3H was used for the esterification reactions of oleic acid. Therefore, methanol (9 mmol), 
oil (2 mmol), and nanocatalyst (0.02 g) were mixed in a round-bottom flask. Afterward, the mixture was heated at 60 ◦C for 1.5 h. The 
nanocatalyst was separated using a magnet after the completion of the reaction, and excess methanol was removed from the upper 
liquid phase using rotary evaporation. The extracted organic phase was washed with distilled water to remove the remaining im
purities and finally, sodium sulfate was used to dry the organic phase (Scheme 2). 

The catalytic activity of TiFe2O4@SiO2–SO3H was used for esterification reactions of Palmitic acid. Therefore, Palmitic acid (2 
mmol), methanol (9 mmol), and TiFe2O4@SiO2–SO3H (catalyst) (0.02 g) were mixed in a round-bottom flask (Scheme 3). Afterward, 
the mixture was heated at 70 ◦C for 1 h. After the completion of the reaction, TiFe2O4@SiO2–SO3H was separated using an external 
magnet, and excess methanol was removed from the upper liquid phase using rotary evaporation. Then, to remove impurities, the 
organic phase was washed with distilled water and dried using Na2SO4. 

2.3. Selected NMR data 

S1) Methyl oleate:1H NMR (CDCl3, 400 MHz): δ = 0.83 (s, 3H, CH3), 1.11 (m, 20H, 10CH2), 1.36 (m, 2H, CH2), 1.89 (m, 4H, 2CH2), 
2.35 (t, 2H, CH2), 3.56 (s, 3H, CH3), 5.59 (m, 2H, 2CH) ppm. FT-IR (KBr) cm− 1: 589, 720, 1202, 1463, 1752, 2953. 

Scheme 1. Synthesis of TiFe2O4@SiO2–SO3H  
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S2) methyl palmitate:1H NMR (CDCl3, 400 MHz): δ = 0.83 (s, 3H, CH3), 1.03 (m, 24H, 12CH2), 1.49 (m, 2H, CH2), 2.19 (m, 2H, 
CH2), 4.15 (s, 3H, CH3) ppm. FT-IR (KBr) cm− 1: 604, 723, 1208, 1743, 2884, 3426. 

2.3.1. Catalyst characterizations 
FT-IR spectra of TiFe2O4 (a), TiFe2O4@SiO2 (b), and TiFe2O4@SiO2–SO3H (c) catalyst are shown in Fig. 1. The FT-IR spectrum of 

TiFe2O4 nanoparticles shows two bands in the regions of 505 and 648 cm− 1 are assigned to the stretching vibrations of the tita
nium–oxygen and the iron-oxygen bonds, respectively. In Fig. 1b, the observation of the stretching vibration band at 1106 cm− 1 is 
related to Si–O bonds and evidence for the presence of SiO2 on the surface of TiFe2O4 nanoparticles. In Fig. 1c, the functionalization of 
–SO3H groups on TiFe2O4@SiO2 was approved by the absorption of OH stretching bands of the –SO3H moiety at 2500–3500 cm-1 in 
the FT-IR spectrum [24]. 

Fig. 2 shows the FT-IR spectrum of the nanocatalyst after recycling. There is no change in the FT-IR of TiFe2O4@SiO2–SO3H after 
recovery, which confirms the stability of the nanocatalyst (Fig. 2). 

The XRD pattern of TiFe2O4@SiO2–SO3H nanocomposite was presented in Fig. 3a and b. As shown in Fig. 3a, the TiFe2O4@
SiO2–SO3H MNPs afforded seven sharp and strong peaks at 2θ = 30.1, 35.45, 43.12, 53.27, 56.88 and 62.45 indexed to the (2 2 0), (3 1 
1), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) planes, respectively showing good agreement with XRD pattern of previous reports on TiFe2O4 
MNPs. These analyzes confirm that the TiFe2O4 structure is not degraded by the silica sulfuric acid shell stabilization, and that the 
background noise is caused by the dried amorphous SO3H shells (Fig. 3b) [25]. 

The TGA was investigated for the quantitative determination of the ligand (SiO2–SO3H) supported on the surface of TiFe2O4 
magnetic nanoparticles (Fig. 4). As illustrated in Fig. 4a, the curve of TiFe2O4, the first change which is observed below 200 

◦

C may 
have corresponded to the loss of physically adsorbed H2O on the surface of this compound. The little quantity of weight loss (6%) after 
200 

◦

C is due to the removal of SiO2 groups (Fig. 4b). As shown in Fig. 4c, for TiFe2O4@SiO2–SO3H, there is a weight loss of 11% 
between 250 and 700 

◦

C related to the breakdown of the TiFe2O4@SiO2–SO3H moieties. The results of the TGA analysis confirmed the 
successful support of SiO2–SO3H on the surface of TiFe2O4 MNPs. 

The EDX image of TiFe2O4@SiO2–SO3H nanocatalyst (Fig. 5) shows the presence of Ti, Si, Fe, S, and O elements. These results show 
that there are no other impurities related to the solvents and materials used in the catalyst synthesis steps. 

Scheme 2. Esterification of oleic acid.  

Scheme 3. Esterification of Palmitic acid.  

Fig. 1. Comparative study of FTIR spectra of a) TiFe2O4, b) TiFe2O4@SiO2, c) TiFe2O4@SiO2–SO3H  
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The morphology of the nanoparticles in the scanning electron microscope (SEM) images (Fig. 6) shows that the nanoparticles are 
spherical and have a relatively uniform distribution. The SEM images of TiFe2O4 (Fig. 6a, b, and 6c) and TiFe2O4@SiO2–SO3H (Fig. 6d, 
e, and 6f) declared that the catalyst was synthesized as nanometer-sized quasi-spherical particles with 60–100 nm average diameter 
(Fig. 6). Also, a continuous layer of the SiO2–SO3H can be observed on the surface of the catalyst, if we compare TiFe2O4@SiO2–SO3H 
result with TiFe2O4. 

TiFe2O4 (Fig. 7a and b) and TiFe2O4@SiO2–SO3H (Fig. 7c and d) were characterized by TEM. The scanning electron microscopy 
images show that the size of the nanocatalyst particles is in the nanometer range (60–100 nm) with a sphere-like structure. Trans
mission electron microscopy images confirmed these observations (Fig. 7). 

The adsorption–desorption isotherms of N2 at 77 K were characterized by porosity adsorption (Fig. 8). BET analysis was performed 
to know the mean pore diameter, total pore volume, and surface area of TiFe2O4 and TiFe2O4@SiO2–SO3H. In Fig. 8a, the N2 
adsorption–desorption isotherm of TiFe2O4 has been displayed. Regarding the N2 adsorption-desorption isotherms technique, the 
obtained surface area of TiFe2O4 is 100.39 (m2/g). As shown in Fig. 8a, the size distribution and pore volumes of TiFe2O4 obtained 

Fig. 2. FTIR spectra of recovery TiFe2O4@SiO2–SO3H  

Fig. 3. XRD spectrum of a) TiFe2O4 and b) TiFe2O4@SiO2–SO3H  

Fig. 4. TGA curve of a) TiFe2O4, b) TiFe2O4@SiO2, c) TiFe2O4@SiO2–SO3H.  
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were 0.34 cm3 g− 1 and 5.7 nm respectively. Also, in Fig. 8b, the N2 adsorption–desorption isotherm of TiFe2O4@SiO2–SO3H can be 
observed. Regarding the N2 adsorption-desorption isotherms, based on the BET method, the obtained surface area of TiFe2O4@
SiO2–SO3H is 21.01 (m2/g). Also, the total pore volumes and mean pore diameter of TiFe2O4@SiO2–SO3H were 0.15 cm3 g− 1, and 16 
nm, respectively. The reduction of the surface area in the final catalyst is due to the successful fixation of SO3H on the surface of 
TiFe2O4 (Fig. 8a and b). 

In the next step, using the back-titration method, the acid strength of the synthesized catalyst, that is, the surface density of SO3H 
groups, was determined. First, 0.1 g of the synthesized catalyst was dispersed in 60 ml of water in a flask and stirred for 30 min, then 10 
ml of NaOH (0.1 N) was added to the reaction vessel under constant stirring and until the pH changed. did not change. The catalyst was 

Fig. 5. EDX images of TiFe2O4@SiO2–SO3H.  

Fig. 6. SEM images of TiFe2O4 (a–c), TiFe2O4@SiO2–SO3H (d–f).  
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separated using an external magnet. Then, two drops of phenolphthalein were added to the container and were tittered with 1.1 ml HCl 
(0.1 N). Thus 1 g of catalyst has 8.9 mmol of the acidic group which is higher than the amount reported so far in the literature. 

The magnetic property of the catalyst was investigated by VSM analysis and its results are shown in Fig. 9. The value of saturation 
magnetism (Ms) for the catalyst is 5.51 emu/g. However, the synthesized catalyst was easily separated from the reaction mixture by an 
external magnet. 

2.3.2. Catalytic studies 

2.3.2.1. Esterification reactions. Next, the catalytic activity of TiFe2O4@SiO2–SO3H was investigated using the esterification of 
methanol with oleic acid. To optimize the reaction conditions in the presence of TiFe2O4@SiO2–SO3H for biodiesel production, the 
effect of various parameters such as the amount of catalyst (0.03–0.007 g), molar ratios of methanol to oleic acid, base, and tem
perature were investigated. By using 0.02 g of the reported nanocatalyst, the maximum production of biodiesel was obtained. A 
maximum conversion of 97 % (oleic acid to ester) was achieved for the temperature of 60 ◦C. The molar ratio between oil and methanol 
was considered to be 9:2 in this study for the completion of the esterification process. The excess amount of alcohol in the esterification 
of fatty acids will help to disperse the catalyst in the reaction media, leading to more biodiesel production. Also, excess alcohol 
prevents the reverse reaction and, as in other esterification reactions, more ester is produced (Table 1). 

Next, the catalytic activity of TiFe2O4@SiO2–SO3H was investigated using the esterification of palmitic acid with methanol 
(Table 2). The model reaction was carried out in the absence of a mesoporous catalyst (TiFe2O4@SiO2–SO3H) even after 5 h, there is no 
product was observed. Also, according to the obtained results, the reaction efficiency decreased with the decrease in the amount of 
nanocatalyst. The results are shown in Table 2. 

The mechanism of TiFe2O4@SiO2–SO3H catalytic esterification is shown in Scheme 4. Initially, TiFe2O4@SiO2–SO3H acts as an acid 
catalyst to activate the carbonyl group of oleic acid to form positive carbon ions. The acidic TiFe2O4@SiO2–SO3H catalyst can provide 
H+, and the H+ attacks the carbonyl group of oleic acid. Then protonation of the carbonyl group leads to the generation of carbocation. 
In the end, after the nucleophilic attack of the methanol molecule, a tetrahedral intermediate is formed, Water molecules are removed, 
and finally biodiesel and H+ will be produced. 

2.3.2.2. Hot filtration. With optimal reaction conditions in hand (esterification reaction of Palmitic acid and MeOH), to test the 
heterogeneous nature of the TiFe2O4@SiO2–SO3H hot filtration experiment was performed under the optimal reaction conditions. In 
the absence of catalyst, the maximum yield was about 4% at 1h, showing that the reaction could not progress without an acid catalyst. 
The progress of the reaction in the presence of the acid catalyst reaches 97% after 1 h, which shows that the presence of the catalyst 
increases the reaction rate. 

Fig. 7. TEM images of TiFe2O4 (a and b), and TiFe2O4@SiO2–SO3H (c and d).  

Fig. 8. Nitrogen adsorption-desorption isotherm for TiFe2O4 (a) and TiFe2O4@SiO2–SO3H (b).  
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3. Catalyst recyclability 

To investigate the recyclability of the catalyst, the palmitic acid with methanol was examined as a model reaction using 0.02 g of 
TiFe2O4@SiO2–SO3H. Using a simple magnet, the catalyst was separated and washed several times with ethanol. The reported catalyst 
was recovered and reused for five periods without loss of activity (Fig. 10). 

Table 3 shows the catalytic activities of previously reported catalysts compared to TiFe2O4@SiO2–SO3H in the esterification of oleic 
acid with methanol. Considering the reaction conditions, the reported catalysts show lower catalytic efficiency than the TiFe2O4@
SiO2–SO3H catalyst. This indicates that the TiFe2O4@SiO2–SO3H catalyst is more useful in esterification reactions compared to earlier 
ones (Table 3). 

4. Conclusion 

This work reports the investigation of an efficient procedure to prepare TiFe2O4@SiO2–SO3H a novel, green, magnetic catalyst. The 
prepared catalyst, TiFe2O4@SiO2–SO3H, was identified via BET, TEM, EDS, SEM, VSM, TGA, XRD, and FT-IR. The new catalyst was 

Fig. 9. VSM curves of TiFe2O4@SiO2–SO3H.  

Table 1 
Material balance calculations for the optimized yield of biodiesel in the presence of mesoporous TiFe2O4@SiO2–SO3H.  

Entrya Catalyst 
amount (g) 

temperature 
(◦C) 

MeOH/oleic acid molar ratio 
(mmol/mmol) 

Time 
(h) 

Biodiesel Produced 
(mg) 

Unreacted Material 
(mg) 

Biodiesel yield 
(%) 

1 – 60 9:2 8 – – N. R 
2 0.007 60 9:1 1.5 0.098 0.46 35 
3 0.01 60 9:2 1.5 0.166 0.29 59 
4 0.02 60 9:2 1.5 0.273 0.48 97 
5 0.03 60 9:2 1.5 0.228 0.26 81 
6 0.02 25 9:2 1.5 0.141 0.27 50 
7 0.02 50 9:2 1.5 0.186 0.22 66 
8 0.02 60 8:2 1.5 0.163 0.38 58 
9 0.02 60 11:2 1.5 0.180 0.25 64 
10 0.02 60 13:2 1.5 0.211 0.23 75  

Table 2 
Material balance calculations for the optimized yield of biodiesel in the presence of mesoporous TiFe2O4@SiO2–SO3H.  

Entrya Catalyst 
amount (g) 

temperature 
(◦C) 

MeOH/Palmitic acid molar ratio 
(mmol/mmol) 

Time 
(h) 

Biodiesel Produced 
(mg) 

Unreacted Material 
(mg) 

Biodiesel yield 
(%) 

1 – 70 9:2 5 – – N. R 
2 0.07 70 9:2 1 0.089 0.46 35 
3 0.01 70 9:2 1 0.153 0.29 60 
4 0.02 70 9:2 1 0.251 0.48 98 
5 0.03 70 9:2 1 0.212 0.26 83 
6 0.02 25 9:2 1 0.158 0.27 62 
7 0.02 50 9:2 1 0.179 0.22 70 
8 0.02 70 8:2 1 0.128 0.38 50 
9 0.02 70 11:2 1 0.161 0.25 63 
10 0.02 70 13:2 1 0.210 0.23 82  

a Isolated yield. 
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used for the synthesis of the esterification reactions. Moreover, this new TiFe2O4@SiO2–SO3H can be easily prepared from 
commercially available materials. Also, it can be mentioned good catalytic activity, easy separation by an external magnet, and 
reusability of the introduced catalyst. 
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Scheme 4. Proposed Mechanism for biodiesel in this presence of TiFe2O4@SiO2–SO3H.  

Fig. 10. Recyclability of TiFe2O4@SiO2–SO3H.  

Table 3 
Comparison of the catalytic efficiency of reported catalysts with prepared TiFe2O4@SiO2–SO3H catalyst in the esterification of oleic acid with 
methanol.  

Entry Catalyst Reaction Time (mine) Yield (%) Ref 

1 30% SiW11/MCM-41 Oleic acid + Methanol 1h 30 [26] 
2 PCs–SO3H Oleic acid + Methanol 2h 70 [27] 
3 F− -SO4

2− /MWCNTs Oleic acid + Methanol 6h 90 [28] 
4 ZrFe-SA-SO3H Oleic acid + Methanol 4h 92 [29] 
5 Na-Q-3T Oleic acid + Methanol 2h 60 [30] 
6 TiFe2O4@SiO2–SO3H Oleic acid + Methanol 3h 98 This work  
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