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A B S T R A C T   

The wide occurrence of medicines and textiles pollutants in water bodies, as well as their by-products, has raised 
concerns about the impact of damage to the environment and human health. In this study, the photocatalytic 
effect of Lanthanum nickelate (LaNiO3), strontium cerate (SrCeO3), and LaNiO3/SrCeO3 nanocomposite were 
studied using the co-precipitation method at room temperature. Various techniques were used to analyze the 
structural, morphological, optical properties of these synthesized nanoparticles. The results indicates uniform 
growth of LaNiO3 nanoparticles on the surface of SrCeO3 nanoparticles in sphere-shaped forms which confirms 
the formation of a p-n type junction catalyst. The energy bandgap of SrCeO3, LaNiO3 and LaNiO3/SrCeO3 was 
found to be 2.79, 2.06, and 1.65 eV, respectively. The photocatalytic activity was studied by degradation of 
Methylene Blue dye under visible light. As a result, reusability test shows the stability of catalysts for long-term 
period. The LaNiO3/SrCeO3 composites depicts the effective degradation for MB dye was 93.5% at 100 min. The 
rate constant (K, min− 1) of SrCeO3, LaNiO3, and LaNiO3/SrCeO3 was 0.0050, 0.0088, and 0.0156, respectively. 
The antibacterial action of LaNiO3/SrCeO3 versus Klebsiella pneumoniae and Bacillus cereus observed by using the 
antimicrobial test. The peroxidase activity of LaNiO3/SrCeO3 was performed for colorimetric detection of 
dopamine. The linear range of the method is 1-200 nM via the detection limit of 3.48 μM. The LaNiO3/SrCeO3 
has high potential in analysis of dopamine.   

1. Introduction 

Water pollution has arisen as a key concern for the scientific com-
munity in recent years, with fast-rising businesses and populations, 
necessitating an intensive and valid response. Colored dyes used in the 
textile industry, like methylene blue are harmful to aquatic life and 
people who suffer from skin diseases, and lung infections [1–3]. As a 

result, a novel low-cost way of eliminating these dyes before releasing 
them into the environment is required [4]. There are several ways to 
decompose these organic pollutants in wastewater, but advanced 
oxidation processes are still a fairly new technique [5–7]. The best 
methods for reducing pollutants in wastewater systems is photocatalytic 
degradation with semiconductor photocatalysts [8–11]. Previous 
research has shown that heterogeneous photocatalysts are particularly 
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effective in removing a wide impurities from our wastewater system 
[12–16]. Various metal oxides, such as TiO2, Fe2O3, ZnO, ZrO2, Nb2O5, 
V2O5, and WO3, have been employed as excellent catalysts for photo-
catalytic water treatment [17–20]. Hybrid semiconductor materials 
produced by p-n-type heterostructures are an extremely effective way of 
removing organic contaminants [21]. Hybrid semiconductor materials 
such as TiO2-SnO2 [22], CuO-ZnO [23], Mn2CuO4/CdO [14], 
SnFe2O4/BiFeO3 [24] are widely used for photocatalysis process. The 
use of rare earth metal oxide such as Lanthanum nickelate (LaNiO3), and 
strontium cerate (SrCeO3) with band gaps at ~2.0 eV and 3.0 eV, is the 
new technique in photocatalysis system [25–27]. These minerals are 
used frequently to enhance chemical resistance, luminescence, and 
mechanical strength and have exciting applications in the industrial and 
technological fields [25]. Because of its crystal structure, and high ox-
ygen storage capacity, SrCeO3 has received a lot of interest in the pho-
tocatalytic degradation of wastewater pollutants [27]. Because the 
activities and selection of pure SrCeO3 catalysts are generally increased 
by modifying the morphology and particle size. The catalytic oxidation 
can be modified by the LaNiO3 [26]. The LaNiO3, which has remarkable 
properties and is a prospective material in many industries [26]. 

The important hormone in human body is dopamine (DA). The 
presence of DA is necessary to maintain the normal activity of the body. 
Abnormal amount of DA will bad effect on human health and nervous 
system diseases, such as schizophrenia, and Parkinson’s disease were 
conducted [28]. Thereupon, the quantitative DA detection method is 
essential for disease diagnosis. The colorimetric technique has many 
benefits such as facile operation and low cost, and this great for detec-
tion of DA [14]. 

In this study, the synthesize LaNiO3/SrCeO3 heterostructures was 
conducted by a precipitation technique. The physiochemical, optical, 
and structural aspects of LaNiO3/SrCeO3 nanostructures were investi-
gated and the photocatalytic degradation capacity was conducted by 
employing the MB as a pollutant. The reusability analysis of the LaNiO3/ 
SrCeO3 nanocomposites was conducted to investigate the stability of 
catalysts for usage. The antibacterial properties of the LaNiO3/SrCeO3 
was conducted against Klebsiella pneumoniae and Bacillus cereus. The 
peroxidase like activity of the LaNiO3/SrCeO3 nanocomposites was 
studied in the colorimetric detection of DA. The detection limit was 
calculated. 

2. Experimental 

2.1. Chemicals 

Materials and reagents are provided in Support Information Text S1. 

2.2. Fabrication of LaNiO3/SrCeO3 Nanocomposites 

Nanocomposite (p-type LaNiO3/n-type SrCeO3) catalysts were 
fabricated by using the co-precipitation method in two steps. In first 
solution, 0.3 M of lanthanum nitrate hexahydrate, 0.3 M of Nickel ni-
trate hexahydrate and 0.5 M of sodium hydroxide was dissolved in 150 
mL distilled water, which was stirred with a magnetic stirrer for about 
50◦C for 3 hours. Similarly, in second solution, 0.3 M of cerium nitrate 
hexahydrate and 0.3 M of strontium nitrate were dissolving in 150 mL 
distilled water, which was stirred with a magnetic stirrer for about 50◦C 
for 3 hours and 0.5 M of sodium hydroxide solution was added drop by 
drop until the pH of the solution rises to pH-10. The precipitate was 
washed and dried at 90◦C for 8 h. 

To make a suspension, the LaNiO3 and SrCeO3 samples were mixed 
with ethanol as a liquid solvent. The LaNiO3 powder was dispersed in 
100 ml ethanol for 2 hours using a magnetic stirrer. Then, in a similar 
ratio of (1:1) SrCeO3 powder was added to the suspension and mixed 
until a homogeneous mixture was formed. After evaporate the solvent, 
the product was aged at 150◦C for 6 h, and calcined at 500◦C for 3 h. 

2.3. Characterizations technique 

The crystallite size and type of the prepared nanomaterials was 
conducted by using the PANalytical diffractometer. The surface 
morphology was examined by FE-SEM (Mira3TESCAN). The absorbance 
properties and band gap of the prepared sample was recorded by UV-vis 
spectrophotometry (Agilent carry). The photoluminescence properties 
was recorded spectrophotometer (Shimadzu RF-5301). The chemical 
states of elements was recorded by X-ray photoelectron spectroscopy 
(XPS, VG ESCALab220i- XL). The electrochemical impedance (EIS) was 
studied by SP-240 Potentiostat. 

2.4. Photocatalytic test 

The photocatalysis test under UV light (450 W) was investigated 
using MB dye degradation at room temperature. MB degradation was 
studied in various exposure time intervals. The spectrophotometer is 
specifically developed for UV irradiation to analyze catalytic perfor-
mance. The 30 mL of MB (10 mg/L) was used to this test. The distance of 
UV lamp from mixture was 13.3 cm. The equilibrium reaction was found 
after 30 min in dark condition. The LaNiO3, SrCeO3, and LaNiO3/SrCeO3 
catalyst were used to this test. The reusability test was conducted by fifth 
cycle times. The photocatalysis mechanism was studied by using the 
scavenging test in the presence of silver nitrate, EDTA, vitamin C, and 
ethanol for quenching the e-, h+, •O2

− , and •OH. 

2.5. Antibacterial test 

The antimicrobial activity of the LaNiO3/SrCeO3 was determined by 
calculating the % inhibition of Klebsiella pneumoniae and Bacillus cereus. 
Here, the bacterial culture was inoculated and incubated at 37◦C for 18 
h. The culture was washed with saline water. The 5 mL of the nano- 
samples concentration (1, 15, 30, 60 mg) was added to 5 mL of bacte-
rial cultures and shacked for 4 h. The OD of the solutions were recorded 
and the inhibition percentage was determined as the previous study 
[15]. 

2.6. Dopamine detection 

The LaNiO3/SrCeO3 nanocomposites was applied as probe to 

Fig. 1. XRD Patterns of synthesis LaNiO3, SrCeO3 and LaNiO3/SrCeO3 
nanocomposite. 
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colorimetric detection of DA by using the H2O2/TMB in peroxidase ac-
tivity. The interaction absorbance was spectrophotometrically moni-
tored by using UV–visible (Agilent carry) spectroscopy. The reaction was 
conducted by the 50 μL of H2O2/TMB solution (1.0 mM to 1.0 mM), 5 
mg/L of the LaNiO3/SrCeO3 were added to buffer solution. The selec-
tivity of DA detection was studied by mixing the 30 μL of DA solutions 
and the interface compounds. The reaction was stirred at 40◦C for 30 
min. The DA was detected from serum, and urine. The limit of detection 
for this method was calculated. 

3. Results and discussion 

3.1. Characterization 

The X-ray (XRD) diffraction patterns of LaNiO3, SrCeO3, and LaNiO3/ 
SrCeO3 nanocomposites are illustrated in Fig. 1. For LaNiO3, the 
diffraction peaks relates with the planes (102), (110), (104), (202), 
(024), (116), (300), and (220) from hexagonal crystal structure (ICDD 
79-2451) [26]. The diffraction peaks for SrCeO3 are represented by the 

Fig. 2. FE-SEM and elemental mapping of (A, B) LaNiO3, (C, D) SrCeO3, (E, F) LaNiO3/SrCeO3 nanocomposite.  
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miller indices (020), (211), (311), (122), (411), (231), (213), and (520) 
from orthorhombic crystal (ICDD 81-26) [27]. The XRD curve of 
LaNiO3/SrCeO3 nanocomposites confirmed the presence of LaNiO3, and 
SrCeO3 nanoparticles in composite. The result shows that the crystalline 
phase of the LaNiO3/SrCeO3 nanocomposite without any impurities. 
Using the formula, the average crystallite size was estimated from the 
Debye–Scherer equation [15]. The average crystallite size of LaNiO3, 
SrCeO3, and LaNiO3/SrCeO3 nanocomposites is 18.3, 25.4, and 32.3 nm. 
Fig. 2 (A, B) depicts the FESEM images of LaNiO3 nanoparticles with 
elemental mapping. It can be seen the spherical shape of LaNiO3 nano-
particles with smooth surfaces. The elemental mapping shows the 
presence of La, Ni, and O. Fig. 2 (C, D) shows the irregular morphology 
of SrCeO3 with the elemental mapping from Sr, Ce, and O. As shown in 

Fig. 2 (E, F), the surface morphology of the LaNiO3/SrCeO3 nano-
composite was spherical, with irregular shapes of agglomerated parti-
cles. As a result of the elemental mapping of the LaNiO3/SrCeO3 depicts 
the presence of La, Ni, Sr, Ce, and O in composites. 

The optical properties of produced LaNiO3, SrCeO3, and LaNiO3/ 
SrCeO3 materials were investigated UV-vis spectroscopy. The absorption 
measurements were performed to investigate the band gap level. The 
optical absorbance of SrCeO3 was about 400 nm, and increase for 
LaNiO3, and LaNiO3/SrCeO3 nanocomposites. The intensity of LaNiO3/ 
SrCeO3 was higher than SrCeO3, and LaNiO3 in the UV region (Fig. 2A). 
Fig. 2B depicts the energy bandgap (Eg) from the Tauc relation 
expression [29–37]. As shown, the energy bandgap of SrCeO3, LaNiO3 
and LaNiO3/SrCeO3 was found to be 2.79, 2.06, and 1.65 eV, 

Fig. 3. (A) The absorbance vs wavelength, (B) energy band gap, (C) Mott-Schotty test, (D) FTIR spectra, (E) Photoluminescence spectra, and (F) EIS spectra for 
LaNiO3, SrCeO3 and LaNiO3/SrCeO3 nanocomposite 
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respectively. The Mott-Schotty test was utilized to checking the flat band 
potential. As the previous studies, the p-type catalyst such as LaNiO3, 
which that shows the activity in high wavelength compared to UV range 
via lower band gap. The n-type SrCeO3 catalyst with wide band gap was 
activated in UV range [38–40]. The flat band potential of LaNiO3 and 
SrCeO3 was investigated and illustrated in the Fig. 2C. As can be 
observed that the positive slope of n-type SrCeO3 and negative slope of 
p-type LaNiO3 displayed the flat band potential properties [41–43]. Flat 
band potential values for SrCeO3 and LaNiO3 are -0.35 V and +0.13 V, 
respectively. FTIR spectra were used to examine the major functional 
groups existing in pure LaNiO3, SrCeO3, and LaNiO3/SrCeO3. Fig 3D 
displays LaNiO3 with a weak absorption band at 3606 cm− 1 in the IR 
region due to the presence of an O-H stretching vibration from water 
molecules [26]. Strong broad peaks around 637 cm− 1 are related to 
metal-oxygen stretching vibrations. The sharp peak of about 1463 cm− 1 

and the weak peak of around 1384 cm− 1 can be the asymmetric 
stretching of CO3

2− functional groups. Furthermore, The C-H stretching is 
denoted by the peak at 1556.36 cm− 1 and the C-O band is represented by 
the peaks at 1062 cm− 1 and 854 cm− 1. As a result of FTIR spectra of 
LaNiO3/SrCeO3, indicating that the SrCeO3 particles were coated with 
LaNiO3 [27]. 

Photoluminescence (PL) and electrochemical impedance spectros-
copy (EIS) were applied to investigate the rate of excitation of e− /h+

pair recombination for synthesized LaNiO3, SrCeO3, and LaNiO3/ 
SrCeO3. PL measurement is the most effective method for studying the 
photo induced charge carrier properties of semiconductor materials. The 
photoluminescence of LaNiO3, SrCeO3, and LaNiO3/SrCeO3 were 
investigated. The LaNiO3, SrCeO3, and LaNiO3/SrCeO3 samples present 
substantial PL intensity signals and are represented in in Fig. 3E. The 
SrCeO3 sample exhibited the highest intensity. As displayed, the 

LaNiO3/SrCeO3 nanocomposites has much lower PL intensity than the 
pure LaNiO3 and SrCeO3 samples, displaying that bonding with the 
LaNiO3 layer on SrCeO3 may minimize surface defects for charge 
recombination at an interface [48]. 

The electrochemical impedance spectroscopy (EIS) was studied to 
study charge transport carriers for the prepared samples. The EIS spectra 
were evaluated using the Nynquist plot was displayed in Fig. 3F. A lower 
arc radius, as is widely known, suggests less interference for electron- 
hole transmission, meaning that the performance has greater charge 
carrier separation [35]. The EIS result, demonstrates that the arc radius 
of the samples is ordered: SrCeO3 > LaNiO3 > and LaNiO3/SrCeO3 NC 
has the smallest arc radius, which indicates it has the lowest charge 
transfer impedance [47]. At low PL and EIS intensity exhibits that, 
fabricated hybrid LaNiO3/SrCeO3 has a lower recombination rate for 
induced photo-generated charge carriers, resulting the improved pho-
tocatalytic degradation efficiency [35]. XPS analysis was studied for 
information about the chemical and electronic state. XPS analysis of 
LaNiO3/SrCeO3 was conducted. Fig. 4 shows the high resolution XPS 
scan for the presence of lanthanum, nickel, strontium, cerium, and ox-
ygen in composite. For Ce 3d5/2 and Ce 3d3/2 XPS spectrum (Fig. 4A), 
the de-convoluted peaks at 883.2, 889.4 and 897.9, 902.5 and 915.9 eV 
were suggested that the 4+ (IV) oxidation state of cerium in SrCeO3 
[27]. The Sr 3d spectrum (Fig. 4B) displays the two strongest peaks at 
132.3 and 133.9 eV, which related to the Sr 3d5/2 and Sr 3d3/2 core-level 
spin-orbits of Sr2+ oxidation state, respectively [27]. The La 3d and Ni 
2p XPS spectra was depicted in Fig. 4C. It can be seen that the La 3d3/2 
peak overlap Ni 2p3/2 peak, and located at 855.4 eV [26]. The La 3d5/2 
peak was observed at 834-837 eV. The Ni 2p1/2 peak was observed at 
870.01 eV. The presence of La 3d and Ni 2p was observed, due to LaNiO3 
[26]. The O 1s can be de-convoluted into three binding energy peaks 

Fig. 4. XPS de-convoluted of (A) Ce 3d, (B) Sr 3d (C), La 3d, Ni 2p, and (D) O 1s from the LaNiO3/SrCeO3 nanocomposite.  
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centered at 529.3, 531.5 and 532.8 eV were ascribed to the lattice ox-
ygen, O-Sr, O-Ni, O-Ce, and O-La [26] (Fig. 4D). 

3.2. Photocatalytic activity 

The photocatalytic efficiency of the LaNiO3, SrCeO3, and LaNiO3/ 
SrCeO3 nanocomposites were investigated by degradation of MB with 
UV irradiation. Fig. 5A shows the degradation of MB in different 

condition. It can be seen that the MB was degraded about 10% under UV 
light without any catalyst. The adsorption capacities of LaNiO3, SrCeO3, 
and LaNiO3/SrCeO3 were studied via removal of MB in dark condition. 
After 30 min, the adsorption capacities of SrCeO3, LaNiO3, and LaNiO3/ 
SrCeO3 were found 8.31, 15.50, and 20.32%, respectively. The photo-
catalytic capacities of the prepared catalysts was investigated in 
different time (20-100 mins). As can be observed, the photocatalysis 
activity of LaNiO3/SrCeO3 was 93.50 % at 100 min, and it’s higher than 

Fig. 5. (A) Degradation of MB dye for UV-light by different catalysts, (B) Photocatalytic reaction kinetics, (C) zeta potential of LaNiO3/SrCeO3 nanocomposite, (D) 
effect of pH on MB degradation, and (E) effect of catalyst dosage on MB degradation. 
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the activity of SrCeO3 (54.35%), and LaNiO3 (70.51%). The low band 
gap of LaNiO3/SrCeO3, and lower the PL intensity and arc radius can be 
present the substantial photocatalysis response for degradation of MB 
under UV light irradiation [44–53]. 

For different reaction times, Fig. 5B depicts the reaction kinetics of 
MB degradation by SrCeO3, LaNiO3, and LaNiO3/SrCeO3. The rate 
constant (K, min− 1) for photocatalytic degradation reactions for all 
catalysts was found from Fig. 5B. The rate constant (K, min− 1) of SrCeO3, 
LaNiO3, and LaNiO3/SrCeO3 was 0.0050, 0.0088, and 0.0156, respec-
tively. It can be seen that the rate reaction of LaNiO3/SrCeO3 was 1.77, 
and 3.12 times higher than the LaNiO3, and SrCeO3 nanoparticles. 

The pH is an important role in the photo-degradation of pollution. 
Fig.5C shows the effect of pH on degradation of MB under different 
times. Based on the results, the effectiveness of MB degradation under 
UV irradiation utilizing LaNiO3/SrCeO3 nanocomposite were 93.5% for 
alkaline media (pH=10), 80.51% for neutral media (pH=7), and 50.35% 
for acidic media (pH=3). The surface charges of LaNiO3/SrCeO3 at 
different pHs was investigated and displayed in Fig. 5D. The isoelectric 
point for LaNiO3/SrCeO3 is 7.0. The LaNiO3/SrCeO3 has negative charge 
at the higher isoelectric point. At acidic medium, the LaNiO3/SrCeO3 
surface has positive charge, and reducing response due to the positive 
charge of the MB dye [54–56]. The stronger electrostatic interaction 
with MB and LaNiO3/SrCeO3 was done at basic medium. To evaluation 
of the catalyst dose effect on photocatalytic degradation, different dose 
of LaNiO3/SrCeO3 nanocomposites was added to the MB solution 
(Fig. 5E). The most effective catalyst dosage was 20 mg/L (93.5 %). The 
lower catalyst dose leads to less photon absorption by the LaNiO3/Sr-
CeO3 nanocomposite, which results in decreasing the catalytic perfor-
mance. At high catalyst concentrations (25 mg/L), the surface area of 
the catalyst decreases due to particle agglomeration [57]. 

Table 1 illustrates the comparison this study to a previous hybrid 
photocatalyst for the degradation of various organic pollutants. The 
synthesized LaNiO3/SrCeO3 nanocomposite displayed remarkable 
degradation efficiency for MB dye via exposed to UV–light. Catalyst 
regeneration in photocatalytic systems is a significant appearance of 
photocatalysis efficiency for the wastewater purification process 
[58–62]. After recycling the catalyst, the LaNiO3/SrCeO3 were applied 
for the degradation of fresh MB solution. This reaction was repeated for 
fifth cycle. Fig. 6A shows the recycling performance of catalytic effi-
ciency. It can be seen that the photocatalysis capacity of the 
LaNiO3/SrCeO3 was negligibly decreased after 5th cycle time (93.5% to 
92.51%). The XRD of LaNiO3/SrCeO3 was studied after 5th cycle time 
and are showed in Fig. 6B. The XRD analysis shows the stability of 
crystal phase after fifth photo-degradation reaction, and confirms the 
appreciable photostability of p-n type LaNiO3/SrCeO3 nanocomposite as 
a photocatalyst. 

To determine the role of reactive species in the MB degradation, a 
scavenging analysis was conducted. Scavenging investigations paral-
leled the MB photo-degradation process. To detect such species, four 
scavengers, such as vitamin C (VC), ethanol (Et), Ethylene diamine tetra 
acetic acid (EDTA), and silver nitrate (SN) was added to the reaction to 
scavenging superoxide anions (•O2‾) radicals, hydroxyl radicals (•OH), 
holes (h+), and electron (e− ), respectively (Fig. 6C). The presence of VC 
and Et reduces the MB decomposition (%). It can be seen that the 
presence of EDTA and SN can be decreased the photocatalysis amount, 
due to the •OH, and •O2‾ generated by using the h+, and e− , 

respectively, which that showed the •OH, and •O2
− play important role 

in the MB degradation by LaNiO3/SrCeO3 nanocomposites [63–65]. 
The electron spin resonance (ESR) spectra was applied to evaluation 

of degradation mechanism as depicted in Fig. 6D, The high signals with 
intensities were observed for the DMPO–•O2

− and DMPO–•OH under UV 
irradiation. The signal intensity of DMPO–•OH was approximately same 
to the DMPO–•O2

− , which that showed the •OH and •O2
− are keys for MB 

degradation process by LaNiO3/SrCeO3 catalyst [66]. 
The diagrammatic mechanism for MB decomposition with LaNiO3/ 

SrCeO3 nanocomposite is presented in Fig. 6E. The Mott-Schotty test 
shows the cunduction band of SrCeO3 and LaNiO3 are -0.35 V and +0.13 
eV, respectively. The band gap of SrCeO3 and LaNiO3 was calculated 
from kubelka-munk plot, and are 2.79, and 2.06 eV, respectively. The 
valence band was calculated as below: 

EVB = ECB + Eg (1) 

By using the equation, the valence band of SrCeO3 and LaNiO3 are 
2.44, and 2.19 eV, respectively. When a LaNiO3/SrCeO3 semiconductor 
absorbs a photon, electron and hole were generated. Based on the energy 
diagram, the h+ can be transferred from the VB of n-type SrCeO3 to the 
VB of p-type LaNiO3. The excited electrons can be transferred from the 
CB of p-type LaNiO3 to the CB of n-type SrCeO3. Thus, the p-n hetero-
junction LaNiO3/SrCeO3 has better photocatalytic response than the 
LaNiO3 and SrCeO3 [21]. Moreover, the VB potential of LaNiO3 and 
SrCeO3 are positive than the E0= of •OH/H2O (1.99 eV) [14], indicating 
that the h+ on the surface of LaNiO3 can be oxidize H2O into •OH. In 
addition, the CB potential of LaNiO3 is near to SrCeO3 and are approx-
imately negative to reduce the O2 to the •O2

− (E0=-0.33 eV) [15]. 
Therefore, the role of •OH for degradation of MB was stronger than •O2

−

by using the p-n heterojunction LaNiO3/SrCeO3 nanocomposites under 
UV light irradiation, the presence of •OH and •O2

− in system, can be MB 
degraded to CO2 and H2O. 

3.3. Antibacterial activities 

The antibacterial efficiecny of SrCeO3, LaNiO3 and LaNiO3/SrCeO3 
was investigated against Klebsiella pneumoniae and Bacillus cereus and are 
reveled in Fig. S1. The antibacterial performance was investigated via 
various nano samples concentration. The inhibition percentage of nano 
samples on K. pneumoniae and B. cereus enhances with raise in the nano 
samples concentration. The inhibition percentage of LaNiO3/SrCeO3 
was effective than SrCeO3 and LaNiO3 nanoparticles, due to the LaNiO3/ 
SrCeO3 can be penetrates in the bacteria cell membrane, and inhibiting 
the formation of nucleic acid [67]. The production of ROS enhances the 
inhibition percentage of the nano LaNiO3/SrCeO3 material. 

3.4. Colorimetric DA detection 

In this work, the peroxidase like activity of the synthesized LaNiO3/ 
SrCeO3 nanocomposites was investigated for detection of dopamine 
(DA) in the presence of TMB and H2O2. Fig. 7A depicts the absorbance 
spectra of different samples. It can be seen that the LaNiO3/SrCeO3 as 
probe without interaction with DA, has high absorbance in compared to 
other samples. The peroxidase activity of LaNiO3/SrCeO3 was great 
response in interaction with DA. It is noteworthy, the LaNiO3/SrCeO3 
probe shows great response in interaction with DA in the presence of 
other compound such as urea, glutamic acid, arginine, valine, and 
lysine. Fig. 7B shows the effect of DA concentration on the peroxidase 
lick activity of the LaNiO3/SrCeO3 probe, which that showed the 
response of DA detection was enhanced in the lowest DA concentration. 
The LOD equation is [Y = 0.2947 X + 0.178, R2 = 0.9868], and calcu-
lated rom linear range of 1-200 nM [13–15]. The LOD was 3.48 nM (S/N 
= 10). The selectivity response of DA detection was studied by 
LaNiO3/SrCeO3 probe in the presence of other substance such as Urea, 
Glu A, Arg, Val, and Lys, and illustrated in Fig. 7C. The result depicts that 
the LaNiO3/SrCeO3 detect the DA via other compound without any 

Table 1 
Comparison of photocatalytic degradation of MB.  

Catalyst Light source Degradation References 

CeO2/SnO2 UV 80 % [54] 
CeO2/CuO Visible 70 % [55] 
TiO2/La2O3 UV 95 % [56] 
SnO2/TiO2 Visible 90 % [57] 
LaNiO3/SrCeO3 UV 93.5 % This work  
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noises. The accuracy of the prepared method was evaluated by the 
standard addition technique. After adding known concentration of DA 
(10, and 20 nM) into 1.0 mL of urine or serum, the probe was used to 
concentration of DA in two samples. Fig. 7D depicts the DA detection 

from urine and serum. It can be seen, DA detected as 9.8 and 19.9 nM in 
serum, and 10.2 and 21.2 nM in urine. The recovery rate of this probe is 
98-106%. 

Fig. 6. (A) reusability test, (B) XRD of LaNiO3/SrCeO3 nanocomposite after 5th degradation of MB, (C) scavenging test, (D) DMPO spin-trapping ESR spectra of 
LaNiO3/SrCeO3, and (E) The possible photocatalytic mechanism. 
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4. Conclusion 

In conclusion, a LaNiO3/SrCeO3 nanocomposites was prepared using 
a co-precipitation method, and the structural and optical properties 
were studied using various techniques. The XRD results the formation of 
a LaNiO3/SrCeO3 nanocomposites. The energy band gap of prepared 
nanocomposite was studied using UV-visible spectroscopy and shows 
that the combining of LaNiO3 nanoparticles to SrCeO3 can be decrease 
the energy band gap of LaNiO3/SrCeO3. The investigation confirms that 
the degradation of MB for LaNiO3/SrCeO3 nanocomposite was 93.5%, 
which is higher when compared to the pure LaNiO3 and SrCeO3 nano-
particles. The rate reaction of LaNiO3/SrCeO3 was 1.77, and 3.12 times 
higher than the LaNiO3, and SrCeO3 nanoparticles. Furthermore, the 
role of •OH for degradation of MB was stronger than •O2

− by using the p- 
n heterojunction LaNiO3/SrCeO3 nanocomposites under UV light irra-
diation. The inhibition percentage of LaNiO3/SrCeO3 versus Klebsiella 
pneumoniae and Bacillus cereus was effective than SrCeO3 and LaNiO3 
nanoparticles. The as-synthesized LaNiO3/SrCeO3 probe was used to 
dopamine detection. The probe depicts the superior analysis parameters. 
The LOD value of LaNiO3/SrCeO3 probe for DA detection was 3.48 nM. 
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