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A B S T R A C T

The natural frequency of a clamped–clamped functionally graded porous (FGP) nanobeam is predicted in this
study. Material distribution is considered based on monotonous, symmetric, and non-symmetric patterns in
the thickness direction. This paper deals with governing equations of nanobeams based on third-order shear
deformation beam theory in conjunction with nonlocal strain gradient theory (NSGT) and surface effects.
Artificial neural network (ANN) is utilized to predict the effect of eight parameters including temperature
gradient, residual surface stress, porosity distribution pattern, porosity parameter, nonlocal and material length
scale parameters, and elastic and shear coefficients of Pasternak foundation on the fundamental frequency of
FGP nanobeam. Different training methods are selected to simulate input and output dependency. Results show
that the dependency of the natural frequency is inverse to the temperature gradient and nonlocal parameter in
the sense that increasing these factors will decrease the natural frequency. Also, increasing the material length
scale parameter grows the effect of the nonlocal parameter. Residual surface stress, material length scale, and
Pasternak foundation parameters have a direct effect on the output and among them; the material length scale
parameter has a more noticeable effect. Finally, it was found that by increasing the porosity parameter value,
the diversity of natural frequency levels up drastically
. Introduction

In nature, many materials including wood, sponge, bone, etc., are
n the category of porous materials. Utilizing porous materials is a
ommon solution for reducing the weight of structures. This category
f materials has a very low density due to the presence of small pores
nside them. Pores usually were embedded in a solid matrix. In addition
o low density, porous materials are good sound insulators, and have
significant energy absorption capacity. Furthermore, they are highly

ecyclable and exhibit low thermal and electrical conductivity. It is
oteworthy that despite mentioned features, porous materials have
ower stiffness and fracture strength in comparison to homogeneous
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ones. Thus, to fix this problem, sandwich structures and functionally
graded porous materials (FGPMs) were utilized (Chen et al., 2016; Xi-
ang et al., 2017; Foroutan et al., 2021). Bending and buckling analyses
of functionally graded porous (FGP) beams were reported by Chen et al.
(2015). Elastic modulus and density change in the thickness direction of
the Timoshenko beam considering both symmetric and non-symmetric
porosity distribution patterns. Ritz method was utilized to evaluate the
critical buckling load and maximum deflection of the beam. A novel
method was introduced for free vibration and bending analyses of FGP
plates by Yin et al. (2021). Results show under the same values of
porosity parameter; maximum deflection occurs in the even-distributed
porous plate in contrast to uneven one. Gong et al. (2019) developed a
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nonlinear thermoelastic analysis of FGPMs considering the cell-vertex
finite volume method. Based on the results, unlike thermal stress,
deformation and temperature were influenced by porosity distribution
patterns poorly. She et al. (2018) performed nonlinear bending and
vibration of FGP tubes using a novel tube framework and NSGT. On
this basis, Even and uneven porosity distributions were assumed in
functionally graded metal–ceramic tubes.

The most important difference between elasticity fundamental equa-
tions of classical (macro) and non-classical (micro and nano) structures
is related to constitutive equations. Unlike classical continuum mechan-
ics, in non-classical one, size effect has appeared in the stress–strain
relation of the material considering the stress of each point is not
only the function of mentioned point strain. Modified couple stress
(MCS), nonlocal elastic stress (Eringen), strain gradient (SG), modified
strain gradient (MSG), second strain gradient, and nonlocal strain gra-
dient theories can be numbered as non-classical ones. Mindlin (1965)
utilized strain and its first and second gradient in potential energy
density of elastic solid materials as second strain gradient theory. Based
on Eringen’s theory, stress at any point of the body is a function
of the strain at all points of the body (Eringen, 1983). Fleck and
Hutchinson (2001) ignoring higher-order equilibrium equations, pro-
posed the SG theory. Stretch gradient and rotation gradient tensors as
the components of deformation gradient tensor were introduced in SG
theory. The equilibrium of moments of couples was considered by Yang
et al. (2002) in MCS theory. MSG as a three-parameter length scale
theory proposed by Lam et al. (2003) disregarding the effect of anti-
symmetric component of rotation gradient tensor in strain energy. Lim
et al. (2015) extended Eringen theory by introducing new kernel func-
tion in internal energy density potential. Higher order strain gradient
term in addition to nonlocal stress was utilized in this theory namely
NSGT. Utilizing nonlocal theory, forced vibration of porous nanobeams
in hygro-thermal environment was conducted by Barati (2017). On
this basis, nonlocal theory predicts lower resonance frequencies for
an FGP beam in comparison to a local one. Based on FEM a ten-
degree beam element proposed for nonlocal thermo-elastic analysis
of FGP nanobeams by Aria et al. (2019). Li et al. (2018) developed
implementation of NSGT in nanobeams considering thickness effect.
According to this study neglecting strain gradient in thickness direc-
tion leads to misleading in strain energy calculation. Contribution of
thickness effect in bending of porous nanobeams was reported by
Tang et al. (2019a). Considering thickness effect and NSGT vibration
analysis of nanobeams (Tang et al., 2019b), nonlinear dynamic stability
of nanobeams (Chen et al., 2019b), and nonlinear free vibration of
nanobeams (Chen et al., 2019a) have been focused in the literature.

Due to the high surface to volume ratio of nanostructures, the
effects of surface tension play a very important role in the mechanical
behavior of this type of structures (Eltaher et al., 2013; Lu et al., 2019;
Rafieian et al., 2017). On the micro and nano scales, the surface atoms
of the material are in different equilibrium conditions than the bulk
atoms, which originates from the difference in the energies of the two
mentioned parts. Therefore, in nano dimensions, the material surface is
considered as a layer with different mechanical and energy properties.
Therefore, the surface of the nanostructure can be considered as a
layer with a certain energy and connected to the bulk. Gurtin and
Murdoch by adding surface tension effects, presented the theory of non-
classical elasticity of surface tension effects (Gurtin and Murdoch, 1975;
Gurtin and Ian Murdoch, 1978). Bending, buckling and vibration of FGP
nanobeams developed by Enayat et al. (2020a,b) based on NSGT and
Gurtin–Murdoch surface theory. The effect of different parameters such
as porosity distribution pattern, nonlocal parameter, material length
scale parameter and surface characteristic on the critical buckling load
and fundamental frequency were discussed in this study. Babaei and
Eslami (2021) reported nonlinear vibration and snap-through buckling
of FGP panels considering NSGT. Uniform porosity distribution pattern
implemented in radial direction. They showed increasing the porosity
coefficient results in an increase in the nonlinear to linear frequency
2

ratio ANN approach was used by researchers to predict the behavior of
different systems (Ahmad, 2022; Chen, 2022; Deng et al., 2022; Hanif
et al., 2022; Khan et al., 2022; Sharma et al., 2022).

Kao and Hung (2003) examined damage detection in structures
using vibration analysis. ANN approach was employed to identify
the system state in the first step and to generate free vibration re-
sponse in the next step. Garg et al. (2022) implemented Gaussian
process regression (GPR) to compare stiffness prediction based on
final stiffness matrix and superposition of sub-matrices. ANN model
in conjunction with uncertainty quantification algorithm was used to
determine stochastic natural frequency in composite plates by Dey
et al. (2016). Stochastic buckling of sandwich plates regarding zigzag
theory was presented by Kumar et al. (2019). Truong et al. (2020)
optimized material distribution in bidirectional functionally graded
beams with the aid of ANN-differential evolution method. Finally, non-
uniform rational b-spline functions were suggested as optimal material
distribution. Al Rjoub and Alshatnawi (2020) utilized ANN technique
to predict natural frequency of FGP plate based on third-order shear
deformation theory. free vibration of functionally graded beams was
estimated considering ANN approach by Yildirim (2021). The effects
of different inputs such as grading direction, slenderness ratio, material
properties, and grading index on the first five natural frequencies were
studied in this research. Maurya et al. (2021) investigated delamination
in carbon fiber reinforced polymer matrix using ANN and FEM. ANN
was utilized to predict the length and location of delamination based
on the first three natural frequencies in this survey.

According to the authors’ knowledge, the ANN approach was not
implemented to predict the natural frequency of FGP nanobeams based
on NSGT and surface effects. Nanobeam is rested on Pasternak foun-
dation and different porosity distribution patterns are considered in
the thickness direction. Finally, the detailed parametric study inves-
tigates the effect of nonlocal and material length scale parameters,
temperature gradient, porosity distribution, porosity parameter, surface
residual stress, and foundation parameters on the natural frequency
variation of the FGP nanobeam.

2. Governing equations

2.1. Problem schematic

An FGP nanobeam with a rectangular cross-section is presented in
Fig. 1. Length, width and height of the nanobeam are presented by
𝐿, 𝑏 and ℎ, respectively. The nanobeam is rested on the Pasternak
Foundation as a two-variable elastic medium with elastic and shear
stiffness coefficients 𝑘𝑤 and 𝑘𝐺, respectively. 𝑥 and 𝑧 are the axes of
the Cartesian coordinate indicating axial and transverse directions of
the nanobeam. Also; 𝑢 and 𝑤 denote corresponding displacements along
mentioned axes. Utilizing Reddy beam theory, cross-section rotation (𝜑)
is considered in this survey.

Porosity distribution changes in nanobeam as a function of 𝑍 in
transverse direction. Monotonous, symmetric and non-symmetric dis-
tribution patterns are utilized in this research. As shown in Fig. 2,
in monotonous type the distribution of porosities is uniform along
𝑍-direction. In symmetric one, the porosity has the higher density
near the middle surface of the beam and finally, in the non-symmetric
pattern the density of the pores becomes less along 𝑍-direction. Me-
chanical properties of the FGP beam (𝑃 (𝑧)); containing bulk Young’s
modulus (𝐸), bulk density (𝜌), thermal coefficient parameter (𝛼), and
esidual surface stress

(

𝜏𝑠0
)

can be considered as,

(𝑧) = 𝑃0
(

1 − 𝑒1𝑓 (𝑧)
)

, (1)

n which 0 ≤ 𝑒1 < 1 is porosity parameter and 𝑃0 indicates mentioned
arameters as porosity effect is neglected. In addition:

(𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

𝜂 = 1
𝑒1

{

1 −
[ 2
𝜋

(

√

1 − 𝑒1 − 1
)

+ 1
]2}

, 𝑓𝑜𝑟 𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑢𝑠

cos
(𝜋𝑧

ℎ

)

, 𝑓𝑜𝑟 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

cos
(𝜋𝑧 + 𝜋 )

. 𝑓𝑜𝑟 𝑁𝑜𝑛 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

(2)
⎩ 2ℎ 4



X. Cheng, S.H. Al-Khafaji, M. Hashemian et al. Engineering Applications of Artificial Intelligence 123 (2023) 106313

p

t
c
[

[

Fig. 1. Schematic of the FGP nanobeam rested on Pasternak foundation.
Fig. 2. Porosity distribution pattern: (a) Monotonous, (b) Symmetric, (c) Non-symmetric.
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In contrast to above mentioned mechanical parameters, the density
arameter (𝜌) of the FGP beam has a different variation along thickness

direction:
𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑢𝑠∶ 𝜌 (𝑧) = 𝜌0

√

1 − 𝑒1𝜂,

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ∶ 𝜌 (𝑧) = 𝜌0
[

1 − 𝑒𝑚 cos
(𝜋𝑧

ℎ

)]

,

𝑁𝑜𝑛 − 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 ∶ 𝜌 (𝑧) = 𝜌0
[

1 − 𝑒𝑚 cos
(𝜋𝑧
2ℎ

+ 𝜋
4

)]

,

(3)

where

𝑒𝑚 = 1 −
√

1 − 𝑒1. (4)

2.2. Constitutive equations

According to surface elasticity theory, the outer layer of the
nanobeam does not obey the constitutive equations of interior mate-
rial (bulk). The surface layer is considered as a zero-thickness layer
surrounding the bulk. There is no slippage between adjacent atoms of
the surface layer and bulk. NSGT and Gurtin–Murdoch theories are
considered as bulk and surface constitutive equations, respectively.
Based on NSGT and EBT, the stress–strain relation of the bulk material
can be stated as (Lim et al., 2015):
[

1 −
(

𝑒1𝑎
)2 ∇2

] [

1 −
(

𝑒0𝑎
)2 ∇2

]

𝜎𝑥𝑥 =

𝐸
[

1 −
(

𝑒1𝑎
)2 ∇2

]

𝜀𝑥𝑥 − 𝐸𝑙2
(

1 −
(

𝑒0𝑎
)

∇2)∇2𝜀𝑥𝑥, (5)

where 𝜎𝑥𝑥 indicates normal stress component and related strain compo-
nent is depicted by 𝜀𝑥𝑥. 𝑒0 and 𝑒1 are the nonlocal material constants.
The difference is that 𝑒1 refers to first-order strain gradient field. 𝑙 and
𝑎 indicate material length scale parameter and internal characteristic
length, respectively. According to Gurtin–Murdoch theory (Gurtin and
Murdoch, 1975), the interaction of surface layer and bulk material
impresses stress field in 𝑧 direction. Counting mentioned interaction,
thermal environment, ∇2 = 𝜕2

𝜕𝑥2
for EBT, 𝑒1 = 𝑒0 = 𝑒 and neglecting

erms of order 𝑂
(

∇4) (Lim et al., 2015), stress field of bulk material
an be rewritten as:
1 − (𝑒𝑎)2 𝜕2

𝜕𝑥2

]

𝜎𝑥𝑥 =
(

1 − 𝑙2 𝜕2

𝜕𝑥2

)

[

𝐸
(

𝜀𝑥𝑥 − 𝛼𝛥𝑇
)

+2𝜐𝑧
ℎ

(

𝜏𝑠 𝜕
2𝑤
𝜕𝑥2

− 𝜌𝑠 𝜕
2𝑤
𝜕𝑡2

)]

,

1 − (𝑒𝑎)2 𝜕2
]

𝜎𝑥𝑧 =
(

1 − 𝑙2 𝜕2
)

(

𝐺𝛾𝑥𝑧
)

,

(6)
𝜕𝑥2 𝜕𝑥2

3

here 𝜎𝑥𝑧 and 𝛾𝑥𝑧 are the shear stress and shear strain components,
espectively. 𝜐 is poison’s ratio, 𝛥𝑇 is thermal gradient, 𝜏𝑠 and 𝜌𝑠 are
esidual surface stress and surface density. It is worth mentioning that
uperscript ‘‘s’’ is utilized to exhibit corresponding parameters of the
urface layer. The combination of NSGT and Gurtin–Murdoch theory
esults in stress–strain relation of the surface layer as (Enayat et al.,
020a,b),

1 − (𝑒𝑎)2 ∇2] 𝜎𝑠𝑥𝑥 =
(

1 − 𝑙2∇2) (𝐸𝑠𝜀𝑥𝑥 + 𝜏𝑠
)

,

1 − (𝑒𝑎)2 ∇2] 𝜎𝑠𝑥𝑧 =
(

1 − 𝑙2∇2)
[

𝜏𝑠
( 𝜕𝑤
𝜕𝑥

)]

.
(7)

The energy method in conjunction with Hamilton’s principle leads
to final governing equations (Enayat et al., 2020a,b). Following dis-
cretized algebraic equations can be arranged after Employing GDQM
as (Enayat et al., 2020b; Foroutan et al., 2020)

[𝑀] {𝑣̈} + [𝐾] {𝑣} = {0} , (8)

where [𝑀]3𝑁×3𝑁 and [𝐾]3𝑁×3𝑁 are the mass and stiffness matrices,
espectively and 𝑁 is the number of grid points and

𝑣}3𝑁×1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{𝑈}𝑁×1

{𝑊 }𝑁×1

{𝜑}𝑁×1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (9)

For the sake of simplicity and generality, dimensionless groups were
defined in the components of the above matrices as (Enayat et al.,
2020b)

𝜁 = 𝑥
𝐿
, 𝑈 = 𝑢

𝐿
, 𝑊 = 𝑤

𝐿
, 𝜇 = 𝑒𝑎

𝐿
, 𝜆 = 𝑙

𝐿
, 𝜏 = 𝑡

𝐿

√

𝐸0
𝜌0

,

𝐾𝑊 =
𝑘𝑤𝐿2

𝐴∗
0

, 𝐾𝐺 =
𝑘𝐺
𝐴∗
0
, (10)

where

𝐴∗
0 = ∫

ℎ∕2

−ℎ∕2
𝐸 (𝑧) 𝑑𝑧 + 2∫

ℎ∕2

−ℎ∕2
𝐸𝑠 (𝑧) 𝑑𝑧 + 𝑏

[

𝐸𝑠
(ℎ
2

)

+ 𝐸𝑠
(

−ℎ
2

)]

. (11)

3. ANN configuration

ANN is a contraction of Artificial Neural Network and is known as
one of the Artificial Intelligence (AI) tools widely used for different
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Fig. 3. (a) A multilayer perceptron ANN graph alongside inputs and outputs data, (b) ANN used in this study as a predictor.
objectives such as fitting function, classifying data and prediction of
time series (Moshayedi et al., 2022; Naeimi et al., 2014; Xie et al.,
2022). Also, in conjunction with an optimization method such as GA,
SA, or PSO, an ANN shows high potential in determining the optimum
state of the problem. This intelligent system handles data and it is
originally inspired by the brain. Similar to the human brain, ANNs are
consistent with many parallel processing units called neurons working
alongside to solve a problem (Anon, 1995). For curve fitting applica-
tions, neural nets are usually configured of several successive layers
each containing several neurons. These networks are categorized into
different types according to data direction in the network. If the data
stream is only from input to output direction, the network is called
feedforward. On the other hand, some networks handle data in both
directions, the latter is called recurrent network. The best type of curve
fitting ANN is a multilayer feed-forward network (Hashemzadeh et al.,
2017), therefore, in this manuscript, a two-layer Perceptron ANN is
used for modeling the input–output relation of the natural frequency
of an FGP nanobeam rested on an elastic medium considering surface
effects versus different input parameters. This configuration is a simple
and reliable topology for curve fitting used in many references showing
its capabilities. This methodology is well developed and described in
various Xia et al. (2022) and Fan et al. (2022). Eight parameters were
investigated in this study including temperature gradient, residual sur-
face stress, porosity distribution pattern, porosity parameter, nonlocal
and material length scale parameters and elastic and shear coeffi-
cients of Pasternak foundation. The ANN is schematically depicted in
Fig. 3(a). To simulate the input–output nonlinear dependency, usually
Tangent Hyperbolic Sigmoid transfer functions (tansig) are used in the
4

second layer while the output layer has linear functions. Then, the
ANN topology (including layer numbers, hidden layer neuron number
and transfer function of each layer) is chosen by trial and error to
obtain the lowest error/highest performance. Then, the ANN should be
trained. According to that, various training methods are used and the
best method is chosen for simulation of natural frequency functionality
to input variables. Because ANN training has a random basis, the
training of each method is repeated 50 times and the best condition
is considered.

In Fig. 3(a), the 8 input parameters are presented alongside network-
layer configuration as well as natural frequency as the sole output
parameter. In Fig. 3(b), the schematic of the simulated network in
MATLAB is depicted. The raw data for the training network is divided
into 4 pairs of parameters and reported in Tables 1 to 4. 210 various
samples were obtained from different combinations of these tables
versus eight aforementioned input parameters and were used for the
ANN training stage. Various criteria are implemented to assess the
efficiency of trained ANN, for this reason, the total dataset is divided
into three categories called ‘‘Learning Data (70%)’’, ‘‘Validation Data
(15%)’’ and ‘‘Test Data (15%)’’ to compare their error rate. It is worth
mentioning that these categories are randomly selected by the training
method.

In Table 5, the information about each parameter and its level is
summarized.

In Fig. 4, the results of ANN training with 10 various learning
methods are summarized and according to this figure and Table 6, the
trainbr algorithm has the best performance. Hence, in the following
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Fig. 4. Comparison of various training methods and their ANN performance.
Table 1
Natural frequency versus temperature gradient and residual surface stress for FGP nanobeam resting on an elastic foundation.

𝛥𝑇 (𝐾) 0 21.4 42.9 64.3 85.7 107.1 128.6 150 171.4 192.9 214.3 235.7 257.1 278.6 300

𝝉𝒔𝟎
(𝑵
𝒎

)

0.890 1.007 1.002 1.001 0.996 0.994 0.992 0.989 0.986 0.982 0.979 0.976 0.973 0.97 0.966 0.962

0.000 0.89 0.887 0.883 0.88 0.876 0.873 0.869 0.866 0.862 0.859 0.856 0.852 0.848 0.843 0.839

−0.890 0.754 0.749 0.745 0.742 0.737 0.732 0.728 0.723 0.719 0.714 0.71 0.706 0.701 0.698 0.692
Table 2
Natural frequency versus porosity parameter and porosity distribution pattern for FGP nanobeam resting on an elastic foundation.
𝑒𝟏 0.000 0.060 0.130 0.190 0.260 0.320 0.390 0.450 0.510 0.580 0.640 0.710 0.770 0.840 0.900

Non-symmetric 1.020 1.010 1.000 0.993 0.984 0.975 0.963 0.953 0.940 0.926 0.911 0.893 0.873 0.849 0.821
Symmetric 1.020 1.020 1.020 1.020 1.020 1.020 1.030 1.030 1.030 1.040 1.040 1.050 1.050 1.070 1.090
Monotone 1.020 1.010 0.998 0.987 0.975 0.963 0.951 0.936 0.921 0.903 0.885 0.863 0.840 0.811 0.775
Table 3
Natural frequency versus nonlocal and material length scale parameters for FGP nanobeam resting on an elastic foundation.

𝜇 0 0.007 0.014 0.021 0.029 0.036 0.043 0.05 0.057 0.064 0.071 0.079 0.086 0.093 0.1

𝝀
0 0.719 0.720 0.719 0.719 0.719 0.719 0.718 0.718 0.718 0.717 0.717 0.716 0.715 0.715 0.714

0.03 0.785 0.784 0.784 0.784 0.784 0.783 0.782 0.78 0.779 0.778 0.776 0.775 0.773 0.771 0.768

0.06 0.880 0.879 0.880 0.878 0.877 0.876 0.875 0.872 0.87 0.868 0.865 0.862 0.859 0.856 0.853

0.1 1.035 1.035 1.033 1.033 1.031 1.028 1.026 1.024 1.02 1.016 1.012 1.008 1.003 0.998 0.992
Table 4
Natural frequency versus elastic foundation parameters for FGP Nano-Beam resting on elastic foundation.

𝐾𝑊 0 0.007 0.014 0.021 0.029 0.036 0.043 0.05 0.057 0.064 0.071 0.079 0.086 0.093 0.1

𝑲𝑮

0.0001 0.992 0.996 0.999 1.003 1.005 1.008 1.011 1.014 1.017 1.019 1.023 1.025 1.029 1.031 1.034

0.005 1.033 1.036 1.039 1.042 1.045 1.047 1.050 1.053 1.056 1.059 1.062 1.064 1.067 1.070 1.073

0.01 1.073 1.076 1.078 1.081 1.084 1.087 1.089 1.092 1.095 1.098 1.100 1.103 1.106 1.109 1.112

0.02 1.147 1.150 1.152 1.155 1.157 1.160 1.163 1.165 1.168 1.171 1.173 1.176 1.178 1.181 1.183
analysis, the ANN trained with this algorithm will be used for the
prediction of natural frequency and more investigation.
5

To assess the ANN learning level, performance and correlation plots
of the trained network are shown in Figs. 5 and 6.
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c
t

Fig. 5. Performance plot of trained network.

According to the above figures well training state of the network
an be concluded, because firstly all of the data points are located on
he bisector of the plane, secondly, the R-square value is 0.99992 which
6

Table 5
Parameters range and levels.

Parameter Min Max No. of levels

𝛥𝑇 (𝐾) 0 300 15
𝜏𝑠0 −0.89 0.89 3
𝑒1 0 0.9 15
𝜆 0 0.1 4
𝜇 0 0.1 15
𝐾𝐺 0.0001 0.02 4
𝐾𝑊 0.01 0.1 15

is close to 1. Another plot for checking the ANN capability is shown in
Fig. 7. In this plot, the true values are depicted using blue dots and
the ANN outputs are plotted using red circles. There is a good match
between these data.

As depicted in Figs. 8–11, ANN output is plotted alongside true
values for natural frequency versus input parameter pairs. According
to these figures, a very good match is observed between true data
shown in blue dots and the surfaces attained from ANN, which proves
the proper level of ANN training and the capability of this network
to predict natural frequency considering every combination of input
parameters.

For better understanding and analysis of parameters effects on the
natural frequency and its deviation, Figs. 12 and 13 show output

dependency on temperature gradient and residual surface stress.
Fig. 6. Correlation plot of the trained ANN.
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Fig. 7. Comparison of ANN outputs and true data for natural frequency.
Fig. 8. Natural Frequency versus temperature gradient and residual surface stress.
According to the above figures, several points can be concluded.
irst of all, the deviation of natural frequency versus temperature
radient is negligible. On the other hand, residual surface stress has
direct and important influence on natural frequency.

Fig. 14 shows that natural frequency has the lowest deviation
onsidering the symmetric distribution pattern of porosity. In contrast,
he non-symmetric distribution pattern of porosity results in the high-
st deviation and effect on natural frequency. Fig. 15 shows that by
ncreasing the porosity parameter, the deviation of natural frequency
s monotonically leveled up.

As depicted in Figs. 16–19, we understand the increasing effect of
he material length scale parameter on the natural frequency while the
onlocal parameter has almost no effect on the output.
7

These figures prove the higher effect of shear stiffness on the natural
frequency concerning the elastic stiffness of the foundation.

4. Conclusion

In this research, the effect of eight important parameters on the nat-
ural frequency of FGP nanobeams rested on elastic medium considering
surface effects is investigated and modeled using a Perceptron artificial
neural network. Using the obtained ANN, not only one can predict
the systems response in various conditions, but also optimization of
system can be done using heuristic algorithms in the future works.
The trained network is one of the simplest models available having 5
nonlinear neurons in hidden layer and one linear neuron in the output



X. Cheng, S.H. Al-Khafaji, M. Hashemian et al. Engineering Applications of Artificial Intelligence 123 (2023) 106313

l
i
o
i
A
v
t
s
s
m
o

Fig. 9. Natural Frequency versus porosity distribution pattern and porosity parameter.
Fig. 10. Natural Frequency versus nonlocal and material length scale parameters.
ayer. Due to the fact that obtaining a simplified model to predict the
nput–output dependency of investigated system is not possible, the
btained model based on ANN can be used for further researches and
nvestigations such as system design or optimization. To this end, an
NN is created and trained using the natural frequency of the system
ersus eight different parameters. The combination of various levels of
hese parameters attained 210 different samples for ANN training. The
tudied parameters are including temperature gradient, residual surface
tress, porosity distribution pattern, porosity parameter, nonlocal and
aterial length scale parameters and the elastic and shear stiffness

f the Pasternak foundation. Various ANN configurations and training
8

methods were examined and the optimum network with reasonable
performance is chosen by trial and error. Due to the random nature
of ANNs, the network is trained 50 times with each training method
and the best condition is selected between obtained results. According
to obtained performances for training methods, the trainbr and trainlm
have the lowest error. Hence, trainbr is selected for further investiga-
tions and prediction of natural frequency versus input parameters. After
training, the well-trained network is assessed with various indices and
graphs. All of the results and graphs prove that the trained network
has acceptable performance and could be used for the prediction of
natural frequency. Therefore, this network models the system correctly



X. Cheng, S.H. Al-Khafaji, M. Hashemian et al. Engineering Applications of Artificial Intelligence 123 (2023) 106313
Fig. 11. Natural Frequency versus Pasternak elastic foundation parameters.
Fig. 12. Natural frequency deviation versus temperature gradient.
Table 6
MSE and performance of various training methods.

Method trainbfg trainbr traincgb traincgf traincgp traingda traingdx trainrp trainscg trainlm

MSE 4.09E−05 1.37E−07 3.47E−05 6.01E−05 5.11E−05 6.44E−04 2.43E−04 1.00E−04 8.77E−05 3.98E−07
and mimics very well its input–output dependency. Hence, it can be
used instead of a long and complicated system of equations for various
9

reasons including optimization. According to the attained results, the
main conclusions can be summarized as follows:

https://www.mathworks.com/help/deeplearning/ref/trainbfg.html
https://www.mathworks.com/help/deeplearning/ref/traincgb.html
https://www.mathworks.com/help/deeplearning/ref/traincgf.html
https://www.mathworks.com/help/deeplearning/ref/traincgp.html
https://www.mathworks.com/help/deeplearning/ref/traingdx.html
https://www.mathworks.com/help/deeplearning/ref/traingdx.html
https://www.mathworks.com/help/deeplearning/ref/trainrp.html
https://www.mathworks.com/help/deeplearning/ref/trainscg.html
https://www.mathworks.com/help/deeplearning/ref/trainlm.html
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Fig. 13. Natural frequency deviation versus residual surface stress.
Fig. 14. Natural frequency deviation versus porosity distribution pattern.
• An ANN with 5 nonlinear neurons in the hidden layer and on
linear neuron trained well and predicted natural frequency of
system accurately.

• Among various training methods for assumed network, trainbr
and trainlm showed to have the highest performance.

• The dependency of the natural frequency is inverse to the temper-
ature gradient and nonlocal parameter in the sense that increasing
these factors will decrease the natural frequency. Of course, both
of them have a negligible influence on the output in comparison
to the rest of the input parameters.
10
• Increasing the material length scale parameter grows the effect of
the nonlocal parameter. In other words, in lower material length
scale values, the nonlocal parameter has almost no effect on the
output.

• Residual surface stress, material length scale, and Pasternak foun-
dation parameters have a direct effect on the output and among
them, the material length scale parameter has a more noticeable
effect.

• By increasing the porosity parameter value, the diversity of nat-
ural frequency levels up drastically.
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Fig. 15. Natural frequency deviation versus porosity parameter.
Fig. 16. Natural frequency deviation versus material length scale parameter.
• Among the studied parameters in the investigated margins, the
residual surface stress, porosity parameter, shear stiffness and
material length scale are the most influential parameters on the
natural frequency of nanobeam and have an impressive effect.
The rest of the parameters’ influence is almost negligible.

• Increasing the porosity parameter in the symmetric porosity dis-
tribution pattern increases the natural frequency while in con-
trast in monotone and nonsymmetric patterns will decrease the
frequency with a very high rate.

• Tensional residual stresses cause higher values of natural fre-
quency in contrast to compressional residual stresses.
 d

11
The obtained results and parameter effects can be used for the design
and optimization of micro and nanoscale systems based on porous
nanobeams resting in elastic media and considering material and non-
local scale parameters.
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Fig. 17. Natural frequency deviation versus nonlocal parameter.
Fig. 18. Natural frequency deviation versus shear stiffness of Pasternak foundation.
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Fig. 19. Natural frequency deviation versus elastic stiffness of Pasternak foundation.
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