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Abstract
In this paper, we delve into the intricate interplay between optical fields with varying relative
phases in a closed-loop configuration semiconductor quantum well waveguide with four distinct
energy levels, and how it impacts the Fraunhofer diffraction patterns obtained via four-wave
mixing. By harnessing a strong control field, a standing wave driving field, and two weak probe
and signal fields, we drive the waveguide to generate these patterns with maximum efficiency.
To achieve this, we consider three distinct light-matter interaction scenarios, where the system is
first set up in either a lower electromagnetically induced transparency or a coherent population
trapping state, followed by a final state that enables electron spin coherence (ESC) induction.
Our results reveal that the efficiency of Fraunhofer diffraction in the quantum well waveguide
can be enhanced significantly under specific parameter regimes via the spin coherence effect.
Further investigation of the light-matter interaction in the ESC zone, where only one of the
control fields is a standing wave field, demonstrates that spin coherence facilitates more efficient
transfer of energy from the probe light to the third and fourth orders, highlighting its crucial role
in shaping the diffraction patterns.
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1. Introduction

Electromagnetically induced transparency (EIT) is a fascin-
ating quantum optics phenomenon that occurs when a strong
coupling field interferes with a weak probe field, causing
its absorption to vanish [1]. This effect has found applica-
tions in numerous domains, including optical bistability [2, 3],
enhanced Kerr nonlinearity [4], and optical solitons [5, 6],
four-wave mixing (FWM) [7, 8] and so on [9–13].

When a standing-wave (SW) coupling field is applied to
an EIT system, it creates an intriguing phenomenon known as
electromagnetically induced grating (EIG) [14]. The EIG res-
ults in the spatial periodicity of the absorption and dispersion
of a traveling wave (TW) probe field. This spatially periodic
grating has opened up new possibilities for optical switching
[15] and the storage of light that has passed through an atomic
medium [16]. The EIG phenomenon can be further understood
as a manifestation of the interference between the SW coup-
ling field and the TW probe field, which leads to a modulation
in the refractive index of the medium. This modulation gives
rise to a spatial grating structure that results in a spatially vary-
ing absorption and dispersion.

The potential of EIT and EIG in modern applications
has attracted a significant amount of research attention, with
a focus on improving the efficiency and understanding the
underlying physics. The discovery of EIT and EIG phenom-
ena has been a crucial step towards the development of effi-
cient and advanced optical technologies. Further exploration
and development of these phenomena are necessary to con-
tinue pushing the boundaries of modern optics.

A wealth of research has been conducted on various
multi-level atomic systems that integrate with the original
EIG scheme [17–25]. These studies have also delved into
more complex four-level configurations that involve inter-
actions with multiple fields, including N-type [26], Ladder-
type atomic systems [27], and intriguing processes that occur
near plasmonic nanostructures [28] and quantum wells [29].
Such recent works have broadened the horizon of exploring
the rich physics of EIT and EIG, paving the way for further
investigations.

Quantum coherence phenomena in semiconductors have
also been the subject of extensive research. In particular,
quantum structures such as quantum dots or wells have demon-
strated the ability to control the band gap by altering their
geometry [30–34]. This feature makes these structures highly
customizable, serving as artificial atoms with potential applic-
ations in optoelectronics and quantum information technology.
Coherent population trapping (CPT) is another fascinating
effect that arises from preparing media in a coherent super-
position of ground or metastable states, commonly referred to
as dark states [35]. This effect arises due to quantum interfer-
ence in a three-level system. The same experimental setup used

for studying EIT can be utilized for investigating CPT, which
requires satisfying the two-photon resonance condition.

Semiconductors have been shown to exhibit EIT through
intersubband transitions [36], electron spin coherence (ESC)
in a quantum well waveguide [37–42], and nonradiative
quantum coherences [39]. Such quantum coherence can be
harnessed to observe various quantum phenomena in semi-
conductors, such as gain without inversion, coherent control
of absorption and dispersion, and FWM, all made possible by
intersubband optical transitions [43–51].

The objective of this study is to investigate a closed-loop
configuration consisting of a four-level medium interacting
with four light beams. This configuration is similar to the
methods proposed in [46] and can be represented geometric-
ally as a double-V or double 2-structure due to the symmetry
attained by the levels and beams. We explore and compare
three distinct scenarios in this system. In the first two cases,
the system is initially populated in a lower EIT-state or a CPT
superposition state. In the third instance, the system is pre-
pared in a higher state that allows for the induction of ESC.

The results of this study show that the ESC induced in the
third scenario produces a highly efficient Fraunhofer diffrac-
tion pattern. This phenomenon arises due to FWM processes
in the quantum well waveguide. The Fraunhofer diffraction
pattern is a result of the interference between the scattered
waves and provides important insights into the system’s beha-
vior. The efficiency of this pattern is enhanced by the presence
of ESC, which amplifies the FWM process.

These findings demonstrate the potential of using ESC in
conjunction with FWM processes to achieve highly efficient
Fraunhofer diffraction patterns. This study provides insights
into the behavior of the closed-loop configuration in various
scenarios and highlights the importance of ESC in achieving
these results. The findings could be useful in the development
of new optical devices and technologies.

1.1. Waveguide model and quantum equations

In this study, we examine a waveguide with multiple quanta
wells at four energy levels, as previously investigated by
Asadpour et al [46]. The energy level diagram and dipole-
allowed transitions are illustrated in figure 1. By utilizing the
dipole and rotating wave approximations, the Hamiltonian can
be expressed in the interaction picture

HI
int/h̄=∆1 |b⟩⟨b|+∆− |c⟩⟨c|+(∆− −∆2) |d⟩⟨d|

− (Ω− |a⟩⟨b|+Ω+ |d⟩⟨b|+H.c)

− (Ω1 |a⟩⟨b|+Ω2 |d⟩⟨c|+H.c). (1)

The detunings are defined as ∆1 = ω1 −ωab,∆− =
ω− −ωac and ∆2 = ω2 −ωdc, where ωmn = (εm−
εn)/h̄ [m,n= a,b,c,d;m ̸= n, εm(n) is the energy of state
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Figure 1. Multiple quantum well waveguide interacts with four laser fields.

[m(n)], ωj( j = 1,2,±) is the frequency of the corresponding
laser, and Ω+ = (µ⃗bd .⃗e+)E+/h̄, Ω− = (µ⃗ac .⃗e−)E−/h̄, , Ω1 =
(µ⃗ab .⃗e1)E1/h̄, and Ω+ = (µ⃗dc .⃗e+)E2/h̄, are the correspond-
ing Rabi frequencies with µ⃗mn being the dipole moment for
the relevant transition |m⟩ ↔|n⟩ ,Ej( j =±,1,2) indicating
the corresponding electric field amplitude and e⃗j representing
the polarization unit vector of the electric field. The dens-
ity matrix elements represent the populations and coherences
of the quantum states in the system. They can be written as
follows:

ρ̇ab = i(∆1 + iγ1)ρab+ iΩ1(ρbb− ρaa)+ iΩ−ρcb− iΩ+ρad

ρ̇bc = i[(∆− −∆1)+ iγdc]ρbc− iΩ−ρba− iΩ2ρbd+ iΩ∗
+ρdc

+ iΩ∗
1ρac

ρ̇bd = i[(∆− −∆2 −∆1)+ iγ2]ρbd+ iΩ∗
+(ρdd− ρbb)

− iΩ∗
2ρbc+ iΩ∗

1ρad

ρ̇ac = i(∆− + iγ3)ρac+ iΩ−(ρcc+ ρaa)− iΩ2ρad+ iΩ1ρbc
(2)

where γi(i = 1− 3) denotes the total dephasing rates that are
added phenomenologically, and γdc denotes the decoherence
term between ground states |b⟩ and |c⟩.

1.1.1. EIT case. The proposed scheme utilizes a combination
of two Λ-configured EIT subsystems. The first subsystem is
formed by a weak probe field with a Rabi frequency of Ω1

and a strong control field with a Rabi frequency of Ω−. The
second subsystem is formed by another weak probe fieldwith a
Rabi frequency ofΩ+ and a strong field with a Rabi frequency
of Ω2.

To solve equation (2), we apply perturbation theory to
describe FWM and consider the system in a steady-state con-
dition. This allows us to represent the off-diagonal matrix ele-
ment ρ(1)ab in terms of the weak probe fields and strong control
fields. Specifically, we assume that both probe fields are much
weaker than the control fields, so that all atoms remain in the
ground state. Using this assumption, we can obtain an expres-
sion for ρ(1)ab that takes into account the FWM pathway from
level |b⟩ →|a⟩ → |c⟩ →|d⟩ → |b⟩.

ρ
(1)
ab =

−i(∆cb∆ab+ |Ω2|2)Ω1

∆ab(∆cb∆db+ |Ω2|2)+∆db|Ω−|2

+
+iΩ−Ω

∗
2Ω+

∆ab(∆cb∆db+ |Ω2|2)+∆db|Ω−|2
, (3)

where ∆ab = i(∆1 + iγ1),∆cb = i[(∆− −∆1)+ iγdc], and
∆db = i[(∆− −∆2 −∆1)+ iγ2].

Note that the second term in equation (3) corresponds to the
contribution of FWM processes in the medium.

Moving forward, we now turn our focus to the equations of
motion that describe the system under the CPT condition.

1.1.2. CPT case. This section deals with a scenario in which
the weak probe and signal lights are denoted by Ω1 and Ω+,
respectively, and the atoms remain in a CPT state

|D⟩= cb|b⟩− cc|c⟩, cb =
Ω2√

|Ω2|2 + |Ω−|2
,

cc =
Ω−√

|Ω2|2 + |Ω−|2
. (4)

As a result, a pair of weak probe pulses can propagate
through the medium, interacting with the upper legs of the
double-Λ scheme in a coherent manner. Given the afore-
mentioned conditions, we can derive the coherence terms as
follows:

ρ
(1)
bc =

−i|cb|2Ω1 + iccc∗bΩ+

∆ab
. (5)

The presence of the generating field Ω+ is reflected in the
appearance of the term ccc∗b in equation (5).

1.1.3. ESC case. We will now consider a scenario in which
the system is initially prepared in level |a⟩, andweak probe and
signal lights Ω− and Ω1 propagate through a medium coher-
ently prepared by the upper legs of a double-Λ scheme. Via
the FWM setup in pathway |a⟩ →|c⟩ → |d⟩ →|b⟩ → |a⟩,Ω1 is
generated, with both probe and signal lights Ω1 and Ω− being
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much weaker than the control fields Ω+ and Ω2. The resulting
probe susceptibility can be expressed in terms of the relevant
density matrix element

ρ
(1)
ab =

iΩ+Ω
∗
2Ω− + i(∆ac∆ad+ |Ω2|2)Ω1

∆ab∆ac∆ad+∆ac|Ω+|2 +∆ab|Ω2|2
(6)

where, we have:

∆ab = i(∆1 + iγ1), (7a)

∆ac = i[∆− + iγ3], (7b)

∆ad = i[(∆− −∆2)+ iγ5]. (7c)

2. Fraunhofer diffraction; patterns in the far field

The Maxwell wave equation can be applied to estimate the
diffraction pattern of the probe light in an atomic system by
approximating the slowly varying envelope in the steady state
regime. This is illustrated below:

∂Ep
∂z

=
ikp
2ε0

P(ωij), (8)

orr

∂Ep
∂z ′

= {−Im(ρij)+ iRe(ρij)}Eprobe, (9)

where z ′ = (Nµ2
ij

/
2h̄ε0)kpz and the unit for z is represented by

kp = 2π/λ, (Nµ2
ij

/
2h̄ε0)kp.

The transmission function for an atomic sample of interac-
tion length L can be normalized and expressed as

T(x) = exp(−Im(ρij)L)exp(iRe(ρij)L). (10)

Here, the symbol ρij corresponds the susceptibility of the
probe beam and can be utilized for analyzing the transmission
function.

In equation (10), the initial exponential term pertains to the
amplitude while the second term represents the phase mod-
ulations. The Fourier transform of the equation yields the
Fraunhofer or far-field diffraction equation:

Jp(θx) = |F(θx)|2
sin2(Mπ x sinθx)

M2sin2(π x sinθx)
(11)

where

F(θx) =
ˆ 1

0
T(x)exp(−i2π xsinθx)dx. (12)

In the above equation, θx represents the diffraction angle in
relation to the z direction, whileM corresponds to the number

of spatial periods of the grating that is being illuminated by the
probe beam.

3. Results and analysis of findings

In this section, we will analyze the Fraunhofer diffraction pat-
terns for three distinct physical states: EIT, CPT, and ESC
modes. We will consider the control field Ω2 as a standing
wave (Ω2(x) = Ω02 sin(π x/Λx)) to investigate the behavior of
diffraction under the same control parameters. Our aim is to
highlight the significant differences in the Fraunhofer diffrac-
tion patterns for each mode.

The amplitude diagrams for EIT, CPT, and ESC modes
are shown in figure 2(a), illustrating the amplitude diagram
in terms of the x parameter. We notice that all three cases
exhibit an oscillatory behavior. However, the amplitude dia-
gram for the EIT mode reaches its maximum at the antinodes
of the SW, while for both CPT and ESC modes, the amplitude
diagram drops to zero at the antinodes of the standing wave.
Interestingly, we observe that the intensity of the EIT mode
is significantly higher than that of the other modes, indicat-
ing that most of the probe energy remains in the zero-order
diffraction.

The behavior of the patterns in CPT and ESC modes is
quite similar in terms of size, which implies that they share
some common features. Nevertheless, the phase diagram of
the transmission function in figure 2(b) reveals a notable dif-
ference. We observe that the value of the phase diagram in the
ESCmode is considerably higher than that of the other modes,
indicating that some of the probe energymay transfer to higher
orders. In contrast, the intensity of the phase diagram in the
CPT mode reaches zero at some points (nodes of the SW).

Such diagrams provide valuable insights into the behavior
of EIT, CPT, and ESC modes. The amplitude diagram high-
lights the significant differences in the diffraction patterns,
with the EIT mode exhibiting a significantly higher intensity
than the other modes. Moreover, the phase diagram emphas-
izes the importance of considering the physical state when
examining diffraction patterns, as it reveals the possibility of
energy transfer to higher orders in the ESC mode.

Figure 3 displays the Fraunhofer diffraction pattern for the
parametric conditions in figure 2. The solid line represents the
EIT mode, which shows that most of the probe energy is col-
lected in the zeroth order, and only a small amount of the probe
energy is transferred to the first order. On the other hand, in
the CPT (dashed) and ESC (dotted) modes, some of the probe
energy is transferred to higher diffraction orders. Nonetheless,
in these cases, the energy collected in the zero order is still
more than that in the higher orders.

In the next step, we aim to identify conditions where the
energy of the probe field is transferred significantly beyond the
Fraunhofer diffraction pattern. As illustrated in figure 1, the
FWM phenomenon causes the applied fields’ shape to form
a closed loop. Therefore, the relative phase of the applied
fields can affect the quantum well’s optical properties. This
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Figure 2. Amplitude (a) and phase (b) diagram versus parameter x
in EIT (solid), CPT (dashed) and ESC (dotted) lines. The selected
parameters are γ1 = γ2 = 1,γdc = 0.01,∆1 =∆− =∆2 = 0,
Ω02 =Ω− = 1 (EIT), γ1 = 1,∆1 = 0, Ω02 =Ω− = 1 (CPT) and
γ1 = γ3 = 1, γ5 = 0.001,∆1 =∆− =∆2 = 0, Ω02 =Ω+ = 1
(ESC).

is expressed by equations (3), (5) and (6), which are given
below:

ρ
(1)
ab =

−i(∆cb∆ab+ |Ω2|2)Ω1

∆ab(∆cb∆db+ |Ω2|2)+∆db|Ω−|2

+
+iΩ−Ω

∗
2Ω+ exp(iφ)

∆ab(∆cb∆db+ |Ω2|2)+∆db|Ω−|2
(13)

ρ
(1)
bc =

−i|cb|2Ω1 + iccc∗bΩ+ exp(iφ)

∆ab
(14)

ρ
(1)
ab =

iΩ+Ω
∗
2Ω− exp(iφ)+ i(∆ac∆ad+ |Ω2|2)Ω1

∆ab∆ac∆ad+∆ac|Ω+|2 +∆ab|Ω2|2
. (15)

Figure 3. Fraunhofer diffraction pattern versus sin(θx) in EIT
(solid), CPT (dashed) and ESC (dotted) lines. The selected
parameters are same as figure 2.

These relationships show that the phase of the control fields
plays a crucial role in determining the optical properties of
the quantum well. By manipulating the relative phase of the
applied fields, we can potentially achieve significant energy
transfer beyond the Fraunhofer diffraction limit.

In figure 4, the amplitude (a) and phase (b) diagrams of
the transmitted field are shown for the case where the relative
phase of the applied fields is φ = π/4. It is observed that the
intensity of the amplitude modulation for all three modes has
decreased compared to figure 2. Additionally, the amplitude
modulation for the ESC mode (dotted line) has the lowest
value compared to the EIT and CPTmodes. On the other hand,
the phase curve of the transmission function has increased sig-
nificantly compared to figure 2(b).

Therefore, it is expected that in these conditions, the intens-
ity of Fraunhofer diffraction in higher orders is greater than the
zero order. The Fraunhofer diffraction curves for the paramet-
ric conditions of figure 4 for different states (EIT, CPT and
ESC) are shown in figure 5. For the EIT mode (solid line), the
value of the probe energy in the zero order is higher than the
first and second orders, but the value of the probe energy in the
third order is higher than the other orders. For the CPT mode
(dashed line), the amount of probe energy in the first order is
almost zero, and most of the energy amount has been trans-
ferred to the second order. The best conditions for the ESC
mode (dotted line) occur so that themaximum amount of probe
field energy is transferred to the third and fourth orders. In this
case, the minimum amount of energy of the probe field is col-
lected in the zeroth order.

Figure 6 illustrates the different orders of Fraunhofer dif-
fraction in terms of Ω02 for relative phase φ = 0 (a) and φ =
π/4 (b) for the EIT condition. For φ = 0, most of the energy
of the probe field is accumulated in the zeroth order, and very
little energy is transferred to the first order. The energy of other
orders is zero. For the case of φ = π/4 (b), it is observed that
for different intensities, some of the probe energy is transferred
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Figure 4. Amplitude (a) and phase (b) diagram versus parameter x in EIT (solid), CPT (dashed) and ESC (dotted) lines for relative phase
φ = π/4. The selected parameters are same as figure 2.

Figure 5. Fraunhofer diffraction pattern versus sin(θx) in EIT (solid), CPT (dashed) and ESC (dotted) lines for relative phase φ = π/4.
The selected parameters are same as figure 2.
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Figure 6. Different diffraction orders versus parameter Ω02 in EIT
condition for relative phase φ = 0 (a) and φ = π/4 (b). The
selected parameters are same as EIT conditions in figure 2.

to different diffraction orders. For Ω02 = 0.88, most of the
probe energy accumulates in the first order, but for Ω02 = 1,
the largest amount of probe energy accumulates in the third
order. Therefore, it is possible to control the energy transfer of
the probe field in different orders by controlling the intensity
of the control field.

In figure 7, we present the diffraction orders for the CPT
mode as a function of Ω02 and for the relative phase for two
different regimes values φ = 0 (a) and φ = π/4 (b). In panel
(a) and for φ = 0, the majority of the probe energy is concen-
trated in the first order, with only a small fraction being trans-
ferred to higher orders. As we move to panel (b) for φ = π/4
and reduce the intensity of the coupling field, the probe energy
in all diffraction orders is significantly reduced. However, as
we increase the intensity of the coupling field Ω02, the probe
energy in higher diffraction orders starts to increase. For a
coupling field intensity of Ω02 = 1, the majority of the probe

Figure 7. Different diffraction orders versus parameter Ω02 in CPT
condition for relative phase φ = 0 (a) and φ = π/4 (b). The
selected parameters are same as CPT conditions in figure 2.

energy is transferred to the second order, while the energy of
the third order is greater than that of the first order. These res-
ults demonstrate the significant impact of the relative phase
and the coupling field intensity on the energy transfer between
diffraction orders.

The different diffraction orders versus the Rabi frequency
Ω02 in ESC mode for two relative phase values φ = 0 (a) and
φ = π/4 (b) are presented in figure 8. For the relative phase
φ = 0, it can be observed that as the intensity of the Rabi
frequency increases, most of the probe energy is collected in
the first order. However, for very large Rabi frequencies up to
Ω02 = 1, the intensity of the second order is higher than the
other orders. Finally, for Ω02 = 1, most of the probe energy
is accumulated in the third order. In part (b) of figure 8, most
of the probe energy is transferred to the higher orders when
the Rabi frequency intensity of the coupling field is equal to
Ω02 ≃ 0.7. In this case, the maximum energy of the probe
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Figure 8. Different diffraction orders versus parameter Ω02 in ESC
condition for relative phase φ = 0 (a) and φ = π/4 (b). The
selected parameters are same as ESC conditions in figure 2.

field is placed in the first order. However, for the Ω02 = 1,
most of the probe energy is transferred to the third and fourth
orders, respectively. The results suggest that, in ESC condi-
tions, there is a better possibility of transmitting the probe
energy to the higher diffraction orders with greater efficiency
compared to EIT and CPT conditions. Comparing the results
obtained for these different modes, it can be concluded that the
ESC mode is more efficient in transferring the probe energy
to the higher diffraction orders compared to the EIT and
CPT modes.

These results highlight the importance of the choice of the
operating mode in determining the efficiency of energy trans-
fer to different diffraction orders. By selecting the ESC mode,
it is possible to achieve a higher efficiency in transferring
the probe energy to the higher diffraction orders, which can
have significant applications in various areas, including optical
communication, imaging, and sensing.

4. Conclusion

In this study, we have investigated the influence of relative
phase differences between applied lights on the Fraunhofer
diffraction pattern in a quantum well waveguide structure
composed of two V-type configurations. We have focused on
three different interaction regimes: EIT, CPT, and ESC. In the
CPT scenario, the system is trapped in a superposition of two
lower ground states, while in the EIT regime, it is initially pre-
pared at a lower ground level. However, in the ESC regime,
we prepared the system in a higher excited state.

Our findings suggest that the ESC interaction regime leads
to an increase in diffraction efficiency. We have shown that for
this regime, it is possible to transmit the probe energy to higher
diffraction orders with greater efficiency compared to EIT and
CPT conditions. Our study highlights the importance of care-
fully choosing the interaction regime to achieve efficient and
controlled manipulation of light in quantum well waveguide
structures. Overall, this work provides insights into the role
of FWM processes in controlling the propagation of light in
complex optical systems.
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and Paspalakis E 2021 Sci. Rep. 11 1–11
[48] Asadpour S H and Faizabadi E 2022 Appl. Opt. 61 8139–46
[49] Asadpour S H, Hamedi H R, Kirova T and Paspalakis E 2022

Phys. Rev. A 105 043709
[50] Kadhim Z J, Alkaaby H H C, Izzat S E, Adhab A H,

Dawood A H, Shams M A and Kadhim A A 2022 Laser
Phys. Lett. 19 105204

[51] Liu Y, Xiang Y and Mohammed A A 2022 Laser Phys. Lett.
19 095205

9

https://doi.org/10.1364/JOSAB.30.000136
https://doi.org/10.1364/JOSAB.30.000136
https://doi.org/10.1364/OE.23.009870
https://doi.org/10.1364/OE.23.009870
https://doi.org/10.1364/AO.56.005736
https://doi.org/10.1364/AO.56.005736
https://doi.org/10.1364/OL.42.004283
https://doi.org/10.1364/OL.42.004283
https://doi.org/10.1364/JOSAB.31.002430
https://doi.org/10.1364/JOSAB.31.002430
https://doi.org/10.1088/0953-4075/39/5/013
https://doi.org/10.1088/0953-4075/39/5/013
https://doi.org/10.1140/epjp/s13360-023-03871-z
https://doi.org/10.1140/epjp/s13360-023-03871-z
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1140/epjp/i2017-11510-1
https://doi.org/10.1140/epjp/i2017-11510-1
https://doi.org/10.1088/1361-648X/aaf8c3
https://doi.org/10.1088/1361-648X/aaf8c3
https://doi.org/10.1088/1612-202X/ab60ac
https://doi.org/10.1088/1612-202X/ab60ac
https://doi.org/10.1364/OL.400849
https://doi.org/10.1364/OL.400849
https://doi.org/10.1103/PhysRevLett.89.186401
https://doi.org/10.1103/PhysRevLett.89.186401
https://doi.org/10.1016/j.physleta.2005.04.019
https://doi.org/10.1016/j.physleta.2005.04.019
https://doi.org/10.1016/j.optcom.2013.11.025
https://doi.org/10.1016/j.optcom.2013.11.025
https://doi.org/10.1103/PhysRevE.81.036607
https://doi.org/10.1103/PhysRevE.81.036607
https://doi.org/10.1364/JOSAB.30.001815
https://doi.org/10.1364/JOSAB.30.001815
https://doi.org/10.1103/PhysRevB.74.125306
https://doi.org/10.1103/PhysRevB.74.125306
https://doi.org/10.1103/PhysRevB.69.115337
https://doi.org/10.1103/PhysRevB.69.115337
https://doi.org/10.1016/j.spmi.2018.04.004
https://doi.org/10.1016/j.spmi.2018.04.004
https://doi.org/10.1007/s40094-018-0298-8
https://doi.org/10.1007/s40094-018-0298-8
https://doi.org/10.1140/epjp/s13360-021-01461-5
https://doi.org/10.1140/epjp/s13360-021-01461-5
https://doi.org/10.1038/s41598-021-00141-9
https://doi.org/10.1038/s41598-021-00141-9
https://doi.org/10.1364/AO.469098
https://doi.org/10.1364/AO.469098
https://doi.org/10.1103/PhysRevA.105.043709
https://doi.org/10.1103/PhysRevA.105.043709
https://doi.org/10.1088/1612-202X/ac89f3
https://doi.org/10.1088/1612-202X/ac89f3
https://doi.org/10.1088/1612-202X/ac81bb
https://doi.org/10.1088/1612-202X/ac81bb

	Operating mode dependent energy transfer efficiency in a quantum well waveguide
	Operating mode dependent energy transfer efficiency in a quantum well waveguide
	1. Introduction
	1.1. Waveguide model and quantum equations


	Operating mode dependent energy transfer efficiency in a quantum well waveguide
	1. Introduction
	1.1. Waveguide model and quantum equations
	1.1.1. EIT case.
	1.1.2. CPT case.
	1.1.3. ESC case.



	Operating mode dependent energy transfer efficiency in a quantum well waveguide
	2. Fraunhofer diffraction; patterns in the far field
	3. Results and analysis of findings

	Operating mode dependent energy transfer efficiency in a quantum well waveguide
	4. Conclusion
	References


