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A B S T R A C T   

A critical issue in enhancing the performance of polymer electrolyte membrane fuel cells (FCs) is the slow ki-
netics of the cathodic oxygen reduction reaction (ORR). The development of electrocatalysts with selectivity 
toward the four-electron (4e) pathway and high electrochemical activity to ORR reaction is important for fuel 
cell applications. Within the present study, it was found that boron carbide nanotube (BC3NT) is an encouraging 
ORR-EC based on density functional theory computations. In the pristine BC3NT, the neighboring B atoms with 
positive charges on the surface of the material surface were incapable of providing active sites for the dissoci-
ation of O. However, the ORR catalytic activity of BC3NT improved under the ligand effect due to the 
replacement of Fe atom, where there was a slight over-potential that was similar or lower than that of platinum 
(111), which demonstrated its superior ORR activity. The results suggest that BC-based materials are considered 
promising for ORR catalysis and for designing highly efficient ORR-ECs as alternatives to platinum-based 
catalysts.   

1. Introduction 

Recently, research on proton exchange membrane fuel cells 
(PEMFCs) with high efficiency and sustainability has become the focus 
of many research groups. This is due to the unique advantages of 
PEMFCs, such as fast starting speed, high power density, and low 
operating temperature. However, the sluggish kinetics of the oxygen 
reduction reaction (ORR) at the cathodes is a key limitation of fuel cells 
[1,2]. So, developing an electrocatalyst with high performance is of 
paramount importance for speeding up the ORR reaction at the cath-
odes. In spite of many research studies, the high catalytic performance 
and durability of fuel cells are very dependent upon precious metals, 
particularly platinum [3,4]. Nonetheless, the application of precious 
metal-based electrocatalysts is limited due to their high cost and limited 

availability in nature. Therefore, developing cost-effective and efficient 
ORR-ECs for PEMFCs is of utmost importance and urgency [5–9]. 

Thus far, owing to their abundant active sites and high surface-to- 
volume ratio, one-dimensional (1D) materials have been regarded as 
promising in the field of electrocatalysis [10–13]. Amongst low- 
dimensional materials,1D boron carbide has unique properties such as 
is one high quantum confinement and magnetization, large surface area, 
and high carrier mobility [14–16]. Moreover, many theoretical and 
experimental studies have been done on mixed carbon‑boron nanotubes 
such as BC3 [17,18]. Quantum chemical calculations have shown that 
the formation energy of BC3 nanotubes (BC3NTs) is lower compared to 
that of carbon nanotubes since BC3 sheets can be more easily rolled into 
tubes. Additionally, BC3NTs consist of only C–C and B–C bonds, which 
provide greater stability compared to B–B bonds, resulting in a different 
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energy gap compared to carbon analogs [19]. In addition, many theo-
retical and experimental research studies [20–22] into improving their 
adsorption properties to detect the molecules of different gasses like H2 
[23] NO2 [24–27], NO [28] and H2S [24]. 

Additionally, the development of non-precious metal-based catalysts 
(NPMCs) can lead to more cost-effective and efficient PEMFCs and MABs 
as sustainable renewable energy sources [29–33]. Furthermore, pyro-
lyzed Fe–N–C can serve as an excellent low-cost and high-performance 
electrocatalyst for the ORR in PEMFCs [34–39]. The catalytic activity 
towards ORR and durability can be improved thanks to the existence of 
FeN4 active sites in the graphitic pores or edges (FeN4-edges) [40–43]. 
The formation of FeN4-edges complexes is the cause of the enhancement 
in the ORR activity, capable of boosting ORR via dissociative and 

associative reduction mechanisms [44]. Furthermore, several studies 
report the interactions of heteroatoms (B/N/S/P) in the pyrolyzed 
Fe–N–C catalysts [45–47]. The ORR activity of these catalysts was found 
to be greatly affected by the presence of adjacent active sites. In 
particular, B and N doping in pyrolyzed Fe–N–C increased the density of 
adjacent FeN4 and BN sites, which simplified O2 dissociation and 
enhanced the electrocatalysis performance [48,49]. This configuration 
of active sites led to the side-on adhesion of O2 and an elongation in the 
O–O bond for disassociating O2 with a lower energy barrier, which made 
both associative as well as dissociative reduction mechanisms accessible 
[50]. It has been demonstrated in several studies that B-doped pyrolyzed 
Fe–N–C catalysts exhibit improved ORR performance [51–56]. Further 
studies need to be carried out regarding the dopant additions and spatial 

Fig. 1. The optimized structure of (a) pristine and (b) Fe-doped BC3NT.  
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formation of active sites with regard to the possibility of improving the 
performance of Fe–N–C catalysts. In addition to experimental informa-
tion, theoretical calculations such as density functional theory (DFT) can 
greatly enhance our understanding of various questions, including those 
related to the electronic structure of complex systems [57]. One example 
of this is Nørskov’s work on metallic ORR catalysts, which have been 
thoroughly studied using DFT calculations [58]. The co-doping of 
elemental nitrogen and non-precious transition metal (TM) atoms has 
been shown to render graphene a highly promising electrocatalyst for 
the ORR process. This is thought to be due to the synergistic coupling 
effects that exist between the dual dopants [59,60]. Despite the prom-
ising promise of graphene- and carbon-doped catalysts for the ORR 
process, the theoretical understanding of the origin of their increased 
activity is still limited. A thorough investigation into the mechanisms at 
the atomic scale will therefore provide significant insight into the design 
of even more effective ORR catalysts. 

The main goal of this work was to study the structural and chemical 
properties of Fe-doped BC3-NTs as well as their effectiveness as a catalyst 
for the oxygen reduction reaction. Density functional theory calculations 
were performed to determine the effect of Fe dopant addition on the 
catalytic activity and stability of Fe-B-C active sites. The results indicate 
that the addition of Fe led to improved performance as a catalyst for 
ORR compared to pristine BC3NTs. The study also suggests that 
advanced materials can be developed by adding dopants and controlling 
the location of active sites. 

2. Theoretical methodology 

This study utilized DFT computations with GAMESS software [61] 
using the GGA-PBE functional for the exchange–correlation energies 
[62]. The basis set used was 6–31 + G* [56]. Grimme DFT-D3 was used 
for examining the van der Waals forces in all of the computations [63]. 
For the Fe atom, we used the basis set LANL2DZ and we used 6–31 + G* 
for the other metals [64,65]. We set the convergence criteria for energy, 
force, and displacement at 10-5 Ha, 0.001 Ha/Å, and 0.005 Å respec-
tively. We utilized a single-walled zigzag (8,0) model of BC3NT by 
replacing boron atoms with C atoms in the (8,0) CNTs (see Fig. 1). The 
length and diameter of BC3-NT (8,0) zigzag were 15 Å and 7 Å respec-
tively. It was necessary to saturate the dangling bonds to avoid the 
dangling effect in BC3NT since periodic boundary conditions (PBC) were 
absent in the molecular computations. 

In order to estimate the reaction energy barrier, have been used the 
CI-NEB method [66]. The reference electrode was Nørskov et al.’s 
hydrogen electrode (CHE) [67], which was used for evaluating the 
change in the reaction-free energy (ΔG). We calculated ΔG for an ORR 
elementary step as follows: 

ΔG = ΔE+ΔEZPE − TΔS+ΔGU +ΔGpH (1)  

here ΔE is the difference of total energy, ΔEZPE is the zero0point energy 
and ΔS signifies the entropy change prior to and following the reaction 
step. T signifies the temperature (298.15 K). DFT computations can be 
undertaken to directly calculate the vibration frequency and total en-
ergy of all intermediates. In general, the vibration frequency of the 
substrate was slight. ΔEZPE had to be computed [68]. ΔGU = -neU, U 
signifies the applied electrode potential associated with the standard 
hydrogen electrode, and the number of the electrons was signified by n. 
ΔGpH = -kBTln10. pH (pH = 0 in an acid environment), ΔGpH signifies 
Gibbs free energy correction which depends upon the concentrations of 
H+ ions. Furthermore, for every elementary step that involves the 
proton-electron pair, the free energy G (H+ + e-) was approximated to 
0.5G (H2). Substitution energy (Esub) was computed as follows for esti-
mating and screening appropriate targets for experimental syntheses: 

Esub = ETM@BC3NT + μC + μB − (EBC3NT + μTM) (2)  

where ETM@BC3NT signifies the total energy of Fe-embedded BC3NT and 

EBC3NT signifies that of perfect BC3NT. µB and µC, respectively, signify the 
B atom’s chemical potential in the α-rhombohedral B crystal and that of 
the C atom graphite lattice the chemical potential related to a single 
transition metal atom was signified by µTM, which was computed using 
their related stable bulk phases. 

3. Results and discussions 

3.1. Structures and electronic attributes of pristine and TM-doped 
BC3NTs 

By substituting elements like B, we can adjust the performance of 
CNTs and widen their scope of application. A BC3 nanosheet can be 
rolled into a BC3NT along the chiral vector, similar to that of a CNT. The 
(8,0) BC3NT is characterized by 2 hexagonal rings: the C6 ring con-
taining 6C atoms and the C4B2 ring with 4C atoms and 2B atoms. 
Moreover, it possesses 2 types of B–C bonds with diameters of 1.59 Å and 
1.58 Å, which are parallel and diagonal to the nanotube axis, respec-
tively. There is also the presence of C–C bonds with two different lengths 
of approximately 1.44 Å for the pure BC3NT as per previous theoretical 
research. According to the Hirshfeld analysis, the B atoms had a positive 
charge of 0.15e, but the C atoms had a negative charge of 0.06e, 
reflecting an unequal distribution of charge density on the BC3NT 
compared to the (8,0) CNT counterpart. 

TM can be substituted with B or C atom in the BC3NT for buil-
dingTM@BC3NTs. For this purpose, we investigated two adhesion sites 
for TM substitution. Following the full geometry optimization, site B was 
found to be more favorable site than C site. The Esub values of B and C 
sites were − 3.26 eV and + 0.73 eV, respectively, and they were more 
negative than those on-site B. The was a dramatic loss of electron density 
near the Fe in the EDD plot (see Fig. 2), which indicated the polarization 
of these atoms by the π electron density onto adjacent C atoms. Similar 
results were obtained using the Hirshfeld analysis and the atomic charge 
onto the Fe atom was 0.94 |e|. 

3.2. The assessment of ORR catalytic activity onto the pristine and TM- 
doped BC3NTs 

The stability and good conductivity of the three pristine and Fe- 
doped BC3NT encouraged us to investigate the possibility of using 
them as ORR-ECs. It goes without saying that ORR reactions at the 
cathodes always start with the adsorption of oxygen, which is pivotal for 
the entire ORR circulation and might even specify the overall reaction 
paths. First, Bader charge analysis was carried out and based on the 
results, the B, and Fe atoms have positive charges in pristine and Fe- 
doped BC3NT, respectively. The positive charge populations onto the 
B atoms, where there was an electron transport from the B to Fe atoms, 
was further confirmed by the charge depletion around the B atoms. 
Here, the Fe atoms with a positive charge were predicted to be favorable 
for the adhesion of electron-donating O2 molecules, which were capable 
of serving as the active site for the ORR catalysis, especially, the Fe 
atoms were capable of providing vacant p orbitals for activating O2 and 
promoting subsequent electro-chemical steps. 

Next, we investigated the various ways in which the O2 molecules 
can attach to the Fe-doped BC3-NT surface to determine which sites are 
the most significant for the oxygen reduction reaction. We identified the 
two adhesion complexes with the lowest energy as the most likely to 
become active sites during the ORR. We uniformly placed the O2 mol-
ecules horizontally onto the surface of the nanotube and observed the 
interaction between them and the Fe atoms in a side-on complex (as 
shown in Fig. 3). Moreover, the results showed that the shortest Fe-O 
bond length (l) could be reduced for these two complexes as follows: 
complex A (2.31 Å) > complex B (2.28 Å), which agreed well with the 
decreasing adhesion energy of oxygen ΔEO2 (complex A) (-0.47 eV) >
ΔEO2 (complex A) (-0.52 eV). However, the adsorption energies for 
oxygen in pristine BC3NT are positive. In fact, the shorter Fe-O bond 
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length was capable of providing greater oxygen adhesion strength onto 
the surface of a pristine nanotube. Among all the complexes analyzed, 
the adhesion energy of oxygen on the pristine BC3NT had a positive 
value of 0.13 eV. This implies that O2 adhesion onto the surface of this 
material may be challenging. Hence, it cannot be considered as an ORR 
catalyst, so Fe@BC3NT will be investigated in the subsequent 

computations. There was an apparent electron transport from BC3NT to 
the O2 molecule (see Fig. 3) following the adhesion of the O2 molecule 
onto the surface of Fe@BC3NT. Based on the Bader charge analysis, 
electron transfer was 0.78 |e| for Fe@BC3NT. The electrons transported 
led to the occupation of the anti-bonding orbitals of the adhered O2 
molecule, which extended the bond length of O-O (d) dramatically from 

Fig. 2. The EDD isosurface (middle, isovalue = 0.04 au) of Fe@BC3NT, the blue and yellow regions in the EDD maps correspond to the gained and loss electron 
density are, respectively. 

Fig. 3. Optimized geometry of a single O2 molecule adsorbed onto pristine BC3NT (top) and Fe@BC3NT (bottom).  
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1.23 Å to 1.35 Å for Fe@BC3NT, which shows the possibility of effec-
tively activating and disassociating O2 molecules on theFe@BC3NT 
surface. This demonstrated that Fe doping weakens the oxygen adhesion 
strength, is good for reducing protonation and improving the ORR 
activity. 

All the intermediate complexes of ORR reaction on Fe@BC3NT and 
the related Gibbs free energy plots via two paths were demonstrated in 
Fig. 4a for determining the most favorable 4e path on Fe@BC3NT. As can 
be seen, when U is 0 V, all of the electrocatalytic steps had a downward 
trend. Moreover, the O2 molecule adhered to Fe@BC3NT had an obvious 
tendency for dissociation into O* species initially, which released more 
energy compared to the direct protonation into OOH*. Hence, the ORR 
reaction onto Fe@BC3NT was capable of proceeding via the dissociation 
path (DP). Clearly, protonating O* into OH* was the rate-determining 
step onto the DP, which was accompanied by a free energy change of 
ΔG = -0.69 eV. Thus, the maximum value of U for ensuring the 
exothermic nature of all reaction steps was 0.69 V. The O* protonation 
into OH* onto Fe@BC3NT was capable of producing a maximum change 
in the Gibbs free energy (0.41 eV at U = 1.10 V, which led to 0.41 V 
overpotential for ORR (lower than pure BC3NT see Fig. 4a), which was 
similar to that of graphitic materials doped with N (0.43– 0.73 eV) [69]. 
This shows the acceptable ORR catalytic activity of Fe@BC3NT. Since 
the adhered O2* could be protonated directly for forming OOH*, the 
association path (AP) of Fe@BC3NT was investigated as well. As can be 
seen, because of the very high overpotential of 1.00 V, which was 
greater than the overpotential of the DP, the formation of OOH* could 
have been prevented effectively, Avoiding the OOH* intermediate onto 
Fe@BC3NT made the production of the by-product H2O2 along the AP 
impossible. Also, the formation step of hydrogen peroxide (H2O2) along 
the ORR DP was significantly endothermic onto the Fe@BC3NT, which 
suggested that the 4e DP could effectively suppress the 2 electron (2e) 
path. In addition to having an acceptable ORR catalytic activity, the 
Fe@BC3NT also exhibited higher selectiveness for the 4e reduction path, 
which left water as the only product. Obviously, Based on the analysis 
and screening of Fe@BC3NT, we can regard Fe@BC3NT as an ideal ORR- 
EC with lower Rh-loading for fuel cells. As can be seen, it is apparent that 
the addition of Fe atoms has improved the ORR catalytic performance of 
BC3NT. 

4. Conclusions 

The one-dimensional BC3NT was found to be an encouraging ORR- 
EC based DFT calculation. The results demonstrated that BC3NT had 
high mechanical, thermal, dynamic and thermodynamic stability. 
However, based on the dissociation energy barrier computations and 
free energy analyses, BC3NT did not exhibit enough ORR catalytic ac-
tivity by forming H2O2 as a byproduct. Nevertheless, after replacing the 
Fe atom, BC3NT exhibited a high ORR catalytic activity, where the initial 
over-potential increased 0.41, which was similar or lower than that of 
Platinum (111) (0.45 V). We investigated the reasons for the high ORR 
after the replacement. Moreover, Fe-doped BC3NT systems retained 
their high metallic conductance and selectivity. In fact, Fe-doping can be 
considered as an effective strategy for enhancing the ORR catalytic 
performance of BC3NT. The results from this study can provide valuable 
insights into using boron carbide materials with low Fe-loading for 
achieving highly efficient ORR-ECs. The results also provide a strong 
urge to other research groups to create novel BC-doped materials for 
ORR catalysis, which can potentially serve as substitutes for Platinum- 
based catalysts. 
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