

Molecular Physics

An International Journal at the Interface Between Chemistry and Physics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tmph20

Beryllium oxide fullerene-like as a highly efficient sensor for formaldehyde: a DFT inspection

Santiago Choto, Marcelo Calispa, Nestor Ulloa, Anjan Kumar, Anmar Ghanim Taki, Russul Thabit, Ayat Hussein Adhab, Ahmad Rashed & Zhang Xiang

To cite this article: Santiago Choto, Marcelo Calispa, Nestor Ulloa, Anjan Kumar, Anmar Ghanim Taki, Russul Thabit, Ayat Hussein Adhab, Ahmad Rashed & Zhang Xiang (04 Sep 2023): Beryllium oxide fullerene-like as a highly efficient sensor for formaldehyde: a DFT inspection, Molecular Physics, DOI: 10.1080/00268976.2023.2251607

To link to this article: https://doi.org/10.1080/00268976.2023.2251607

View supplementary material

Published online: 04 Sep 2023.

|--|

Submit your article to this journal 🖸

View related articles 🗹

則 View Crossmark data 🗹

RESEARCH ARTICLE

Check for updates

Tavlor & Francis

Taylor & Francis Group

Beryllium oxide fullerene-like as a highly efficient sensor for formaldehyde: a DFT inspection

Santiago Choto^a, Marcelo Calispa^a, Nestor Ulloa^a, Anjan Kumar^b, <mark>Anmar Ghanim Taki</mark>^c, Russul Thabit^d, Ayat Hussein Adhab^e, Ahmad Rashed^f and Zhang Xiang^g

^a Facultad de Ingeniería Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador; ^bDepartment of electronics and communication engineering, GLA University, Mathura, India; ^cDepartment of Radiology & Sonar Techniques, Al-Noor University College, Nineveh, Iraq; ^dPharmacy college, Al-Farahidi University, Baghdad, Iraq; ^eDepartment of Pharmacy, Al-Zahrawi University College, Karbala, Iraq; ^fPhysics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; ^gCollege of Materials and Engineering, Yangtze Normal University, Chongqing, People's Republic of China

ABSTRACT

In tropospheric hydrocarbon oxidation triggered by the OH radical, formaldehyde (H2CO) is an essential reactive intermediate product. because of its toxicity and volatility, formaldehyde is harmful to human health. Therefore, formaldehyde removal is important for environmental pollution study. For multiple adsorption states, we present the adsorption energies, structures, energy gap (Eg), charge transfer, and electronic characteristics of formaldehyde (H₂CO) on primary cations Li⁺, Li-, and two Li-encapsulated fullerene-like beryllium oxides (Be₁₂O₁₂, Li⁺@Be₁₂O₁₂, Li@Be₁₂O₁₂, and 2Li@Be₁₂O₁₂, respectively). By using DFT calculations, the results have been interpreted. The results show that the H₂CO molecule weakly adsorbs to fullerene-like Be₁₂O₁₂, resulting in an energy release of around -0.38 to -0.14 eV and no substantial changes to its electrical characteristics. Compared to pure fullerene-like Be₁₂O₁₂, the H₂CO adsorption properties of Li⁺@Be₁₂O₁₂, Li@Be₁₂O₁₂, and 2Li@Be₁₂O₁₂ are significantly improved. With the addition of H₂CO, the most stable configuration energy gaps (Eg) shrank from 3.49 to 2.96 eV in the Li@Be₁₂O₁₂ and 2Li@Be₁₂O₁₂ samples. Additionally, it was demonstrated that following H₂CO adsorption, the electrical conductance of Li@Be₁₂O₁₂ and 2Li@Be₁₂O₁₂ may be enhanced. The presence of H₂CO molecules affects Li@Be₁₂O₁₂ and 2Li@Be₁₂O₁₂.

CONTACT Ahmad Rashed Rashed rashed.surface@gmail.com Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2023.2251607

ARTICLE HISTORY

Received 18 April 2023 Accepted 20 August 2023

KEYWORDS

H₂CO; adsorption; Be₁₂o₁₂ fullerene; charge transfer

Introduction

Pollution has a profound economic, scientific, and social influence on nations worldwide. Air pollution from traffic is among the essential residual sources of exposure for people in industrialised nations, where emissions are tightly controlled. In tropospheric hydrocarbon oxidation triggered by the OH radical, formaldehyde (H₂CO) is an essential reactive intermediate product. H₂CO concentration in the atmosphere ranges between 1 and 10 parts per billion. It is also a well-known contaminant released by incomplete combustion. Because of its solid chemical reactivity and thermal stability, H₂CO is frequently employed in industrial production processes. Formaldehyde is found in various construction materials, including foams, polymer goods, and consumer paint [1–9]. Therefore, detecting hazardous molecules is critical. Researchers have searched for nanostructures containing no carbon, e.g. BeO, BP, ZnS, AlP, AlN, SiC, and BN, since carbon nanotubes (CNTs) were developed [10–18]. Nanocage materials, e.g. endohedrals and fullerenes, have been extensively evaluated [19–22]. BeO is a vital alkaline-earth oxide. It could stem from an essential covalent component of the Be-O bond (which is initially ionic) [23,24]. The energy gap between the HOMO and LUMO levels plays a crucial role in nanostructure stability. BeO bonding determines the physic

Figure 1. Optimised pristine Be₁₂O₁₂ (fullerene-like) and DOS plot.

Figure 2. HOMO and LUMO of pristine Be₁₂O₁₂(fullerene-like).

mechanical properties of BeO with a high melting point, excellent hardness, high elastic contents, and high thermal conductivity [25,26]. The synthesis of BeO nanoparticles provides insulation materials with a wide bandgap (nearly 10.6 eV) [27,28]. Researchers have examined the adsorption of H₂, H₂S, NH₄, CH₄, H₂O, CO, and CH₂O on BeO nanostructures [29–33]. The present work subjects the fullerene-like Be₁₂O₁₂ nanostructures to first principle calculations to demonstrate the dependence of their electronic properties on H₂CO adsorption and evaluate their gas-sensing potential.

Computational details

The interaction between fullerene-like $Be_{12}O_{12}$ and H_2CO molecules was theoretically investigated and estimated through density functional theory (DFT) based on the M062X functional [11,34]. 6-311G (d, p) basis set was adopted to describe the atoms, and the GAMESS code was employed to perform the contraction scheme [35]. Density of state (DOS) analysis was conducted in GaussSum [36]. The present work optimised the systems' geometries in a constraint-free optimisation approach.

Figure 3. Configurations for stable adsorption of H_2CO molecules on the $Be_{12}O_{12}$.

4 😔 S. CHOTO ET AL.

The adsorption energy is given by:

$$E_{ad} = E (H_2 CO/Be_{12}O_{12}) - E (Be_{12}O_{12}) - E (H_2 CO)$$
(1)

E (Be₁₂O₁₂), E (H₂CO), and E (H₂CO/Be₁₂O₁₂) denote the fullerene-like Be₁₂O₁₂ energy, H₂CO molecule energy, and total adsorbed H₂CO energy, respectively. Adsorption is exothermic when the adsorption energy is negative and vice versa. The change in HOMO–LUMO gap of $Be_{12}O_{12}$ fullerene-like after H_2CO adsorption calculated by:

$$\Delta Eg = (gap_{complex} - gap_{Be_{12}O_{12}})/gap_{Be_{12}O_{12}})) \quad (2)$$

Table 1. Calculated adsorption energy (Eads), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), HOMO-LUMO energy gap (Eg) for H₂CO molecule adsorption of perfect Be₁₂O₁₂ fullerene-like systems in eV.

System	$E_{ads}(eV) + BSSE$	E _{HOMO}	E _{LUMO}	Eg	$^{*}\Delta$ Eg (%)	**Q _T (e)
Be ₁₂ O ₁₂	_	-10.63	-0.48	10.11	-	-
А	-0.27	-10.42	-0.43	9.92	1.74	0.22
В	-0.36	-10.34	-0.58	9.70	3.88	0.25
С	-0.12	-10.51	-0.34	10.11	0.04	0.03
D	-0.17	-10.45	-0.32	10.06	0.38	0.05

*The change in HOMO-LUMO gap of Be₁₂O₁₂ fullerene-like after H₂CO adsorption **QT is defined as the average natural bond orbital (NBO) population analysis charge on the molecule.

Figure 4. The DOS plot of H₂CO adsorption structures on perfect Be₁₂O₁₂₍fullerene-like).

Results and discussion

Optimised Be12O12 fullerene-like

Pristine surfaces were examined before analyzing the impacts of H_2CO adsorption on the $Be_{12}O_{12}$ surface. In addition, we evaluated H_2CO molecules undergoing adsorption onto encapsulated $Be_{12}O_{12}$. The present work evaluated the adsorption of H_2CO onto $Be_{12}O_{12}$ and endohedral BeO (i.e. $Li^+@Be_{12}O_{12}$, $Li@Be_{12}O_{12}$, and $2Li@Be_{12}O_{12}$) through DFT. The fullerene-like

Figure 5. Optimised cation Li into $Be_{12}O_{12}$ (fullerene-like) and DOS plot.

Be₁₂O₁₂ consisted of 6 squares and eight hexagons. It was employed to serve as a DFT model. The Be₁₂O₁₂ structure consisted of single-bonded B and O atoms. Figure 1 depicts the optimised basic Be₁₂O₁₂ structure and the corresponding DOS plot. As can be seen, three Be-O bond types were detected, including tetragon-up hexagons (1.51 Å), hexagons bridged by another hexagon (1.51 Å), and hexagons bridged to squares (1.55 Å); that is consistent with earlier works (i.e. Be-O bond length of 1.52 Å) [37]. According to the natural bond orbital (NBO) results, the cluster surface experienced 0.64 e of charge transform from Be to the adjacent O atoms, implying that B-O bonds are ionic. According to Figure 1, Be₁₂O₁₂ had an excellent insulation capacity, and the energy gap was 10.11 eV, agreeing with earlier works [38]. The harmonic frequencies were $112.87-1236.20 \text{ cm}^{-1}$, indicating structure stationarity on the potential energy surface. Figure 2 plots the HOMO and LUMO of the Be₁₂O₁₂ fullerene-like structure.

H₂CO adsorption on the Be₁₂O₁₂ surface

Several initial configurations were assumed to evaluate the H₂CO adsorption behaviour on Be₁₂O₁₂. The H₂CO molecules were situated at various locations (e.g. on top of the porous site, hexagonal and tetragonal rings, and above the O and B atoms) to identify the configurations with the highest stability (local minima). Once reliably identified, the H₂CO-Be₁₂O₁₂ distance was adjusted. The highest stability distances were found to be 2.01–2.22 Å. Configurations A, B, C, and D were demonstrated to be stable, and their vibrational frequencies were calculated to be positive. Figure 3 indicates the stable configurations, whereas Table 1 reports the corresponding electronic properties.

According to the results, the H₂CO atoms were the donors. Charge transfer depends on the H₂CO molecule's orientation. Once relaxation had been completed, stable complex systems had adsorption energy values varying from -0.36 to -0.12 eV, implying an exothermic adsorption process. According to Figure 3(b), the H₂CO-Be₁₂O₁₂ interaction strength was maximised

Table 2. Calculated adsorption energy (Eads), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), and HOMO-LUMO energy gap (Eg) for H₂CO molecule adsorption of cation lithium-encapsulated Be₁₂O₁₂ fullerene-like systems in eV.

System	E _{ad}	Еномо	E _{LUMO}	Eg	*∆Eg (%)	**Q _T (e)
Li ⁺ @Be ₁₂ O ₁₂	_	-14.07	-3.68	10.08	_	_
T1	-1.47	-13.77	-4.09	9.62	5.97	0.28
T2	-1.57	-13.65	-3.87	9.65	5.73	0.29
Т3	-1.27	-13.82	-3.95	9.82	4.17	0.27
T4	-1.32	-13.64	-3.95	9.62	5.97	0.09

*The change in HOMO-LUMO gap of Be12O12 fullerene-like after H2CO adsorption **QT is defined as the average natural bond orbital (NBO) population analysis charge on the molecule.

in complex B at a distance of nearly 2.01 Å (adsorption energy = -0.36 eV). The adsorption energy of complexes D, C, and A was -0.17, -0.12, and 0.27 eV, respectively. Due to the NBO results, configurations A, B, C, and D experienced a charge transfer of 0.22, 0.25, 0.03, and 0.05 e, respectively, suggesting configurations C and D had low adsorption strength (physisorption), whereas complexes A and B underwent chemisorption. The H₂CO orientation and Be₁₂O₁₂ sites determine whether the adsorption mechanism is chemisorption or physisorption. H₂CO adsorption contributed to bare Be₁₂O₁₂ electrical properties were explored. As shown in Figure 4, H₂CO adsorption led to a small electronic alternation of Be₁₂O₁₂. The EHOMO (valance level energy) and ELUMO (conduction level energy) of the H₂CO-Be₁₂O₁₂ system were found to be somewhat different from those of the pristine fullerene-like Be₁₂O₁₂. Therefore, Be₁₂O₁₂ can be claimed to be an efficient detector of H₂CO. Moreover, it may not be an effective H₂CO sensor as the H₂CO-Be₁₂O₁₂ system had a poor energy gap difference from the pristine Be₁₂O₁₂.

Adsorption of H_2CO on $Li^+@Be_{12}O_{12}$ fullerene-like

Numerous researchers recently studied ions, molecules, and atoms encapsulated within carbon and non-carbon cages [39,40]. Many studies have been conducted on substances encapsulated in Li and Li⁺ [41,42]. The

Figure 6. Configurations for stable adsorption of H_2CO molecules on the cation Li-encapsulated $Be_{12}O_{12}$.

present work inspected the encapsulation of $Be_{12}O_{12}$ within Li (Li⁺@Be₁₂O₁₂) to enhance the electronic properties and adsorption energy of the bare fullerene-like $Be_{12}O_{12}$. Figure 5 and Table 2 represent the stable Li⁺@Be₁₂O₁₂ configuration and its electronic properties. Several adsorbed $Be_{12}O_{12}$ configurations were assumed, e.g. the O or C atom of H₂CO near the Be or O head of the fullerene-like $Be_{12}O_{12}$. H₂CO molecules on top of the porous site as hexagonal and tetragonal rings were analyzed.

Optimising the configurations indicated that four assumed configurations had stability and positive vibrational frequencies. As shown in Figure 6, the distances of the highest stability varied in the range of 1.92-2.02 Å in systems T1, T2, T3, and T4. Table 2 provides the electronic properties of T1–T4. The Li⁺ ion moved toward the hexagonal ring upon the adsorption of the H₂CO molecule onto Li⁺@Be₁₂O₁₂. The highest stability and smallest adsorption energy configurations were assessed and evaluated electronically. Table 2 shows that T2 had the highest stability and adsorption energy of -1.57 eV. In configuration T2, the H₂CO molecule is positioned from its C head to the cluster surface. H₂CO was found to have been chemisorbed onto Li⁺@Be₁₂O₁₂ as the adsorption energy was obtained, varying from -1.27 to -1.57 eV.

Table 2 shows charge transfer occurred from H_2CO to the endohedral as it was positive. T2 had the highest charge transfer, which could explain the high T2- H_2CO interaction strength. Figure 7 shows the DOS plot of H_2CO adsorption onto $Li^+@Be_{12}O_{12}$. As can be seen, the $Li^+@Be_{12}O_{12}$ system in T2 experienced a slight reduction in the energy gap to 9.68 eV after H_2CO adsorption (the energy gap of pristine the $Li^+@Be_{12}O_{12}$ was 10.08 eV). Thus, the $Li^+@Be_{12}O_{12}$ can be claimed to be insensitive to H_2CO .

Figure 7. The DOS plot of H₂CO adsorption on structures of cation Li-encapsulated Be₁₂O₁₂ surface.

Figure 8. Optimised Li into Be₁₂O₁₂ fullerene-like (endohedral) and DOS plot.

Adsorption of H_2CO on one lithium atom-encapsulated $Be_{12}O_{12}$ fullerene-like

Another possibility was examined to enhance H_2CO detection. The adsorption of H_2CO onto endohedral nanoclusters was theoretically analyzed [19]. A single Li atom was brought to $Be_{12}O_{12}$ to enable a dramatic electronic alternation of $Li@Be_{12}O_{12}$. Figure 8 and Table 3 represent the highest stability and $Li@Be_{12}O_{12}$ electronic properties structure.

In the systems with encapsulation within a single Li atom, the HOMO level upshifted to -3.62 eV. In contrast, the HOMO level of pristine Be₁₂O₁₂ was -10.64 eV. Also, the fullerene-like Be₁₂O₁₂ showed a small LUMO upshift, with the Be₁₂O₁₂ energy gap declining to 3.51 eV. Therefore, the Li-encapsulated Be₁₂O₁₂ can be considered a semiconductor. There are local states within Li@Be₁₂O₁₂'s energy gap, which could enhance Be₁₂O₁₂'s reactivity. It underwent a 65.42% energy gap decline to 3.51 eV upon encapsulation in Li. It can be said that the Be₁₂O₁₂ insulator became a semiconductor due to Li encapsulation.

To examine the interaction between $Li@Be_{12}O_{12}$ and H_2CO , the H_2CO molecule was situated on the endohedral surface. Some initial $H_2CO/Li@Be_{12}O_{12}$ configurations were assumed to identify H_2CO adsorption behaviour. Therefore, the present work positioned H_2CO molecules at various locations, e.g. above the O and Be atoms from the O head and on top of the porous sites as hexagonal and tetragonal rings, so that the configuration of the highest stability (local minima) could be found.

Once the configuration of the highest stability had been ensured, the initial H₂CO-endohedral distance was adjusted. The most stable H₂CO-endohedral distance varied from 2.01 to 2.11 Å. Configurations S1 and S2 showed stability (positive vibrational frequencies), as depicted in Figure 9. Table 3 reports S1 and S2's electronic properties. Figure 10 depicts the adsorption energy through the shortest H₂CO-Li@Be₁₂O₁₂ distance for S1. The lowest adsorption energy represents the optimal adsorption distance. According to Table 3, the adsorption energy of S1 was calculated at -1.09 eV, whereas S2 was calculated to have adsorption energy of -1.03 eV.

Furthermore, S1 underwent a charge transfer of 0.12 e, while S2's charge transfer was 0.09 e, explaining the stronger binding of S1 than S2. As the charge transfers are positive, it can be inferred that it was transferred from H₂CO to Li@Be₁₂O₁₂. Figure 9 illustrates the DOS plot of H₂CO/Li@Be₁₂O₁₂. As can be seen, S1 had an energy gap of 2.84 eV, which is significantly lower than that of

Table 3. Calculated adsorption energy (Eads), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), and HOMO-LUMO energy gap (Eg) for H₂CO molecule adsorption on Li-encapsulated Be₁₂O₁₂ fullerene-like systems in eV.

System	E _{ad}	Е _{НОМО}	E _{LUMO}	Eg	*∆Eg (%)	**Q _T (e)
Li@Be ₁₂ O ₁₂	-	-3.34	-0.10	3.49	65.40	-
S1	-1.09	-3.45	-0.57	2.84	17.90	0.12
S2	-1.03	-3.47	-0.03	3.48	0.09	0.09

*The change in HOMO-LUMO gap of Be₁₂O₁₂ fullerene-like after H₂CO adsorption **QT is defined as the average natural bond orbital (NBO) population analysis charge on the molecule.

Figure 9. Configuration for stable adsorption of H₂CO on the Li@ Be₁₂O₁₂ (fullerene-like) and DOS plot.

Be₁₂O₁₂. Furthermore, S2 showed a slight energy gap difference. Li@Be₁₂O₁₂ is inferred to be a semiconductor based on DOS (energy gap = 2.84 eV). The electronic alternations suggest that Li@Be₁₂O₁₂ is a semiconductor. As a result, the Li@Be₁₂O₁₂ structure appears to have H₂CO sensitivity. A significant change is observed in the DOS plot of H₂CO/Li@Be₁₂O₁₂, implying the potential electronic sensitivity of Li@Be₁₂O₁₂ to H₂CO.

Adsorption of H_2CO on two lithium atom-encapsulated $Be_{12}O_{12}$ fullerene-like

Figure 11 plots the optimised $Be_{12}O_{12}$ structure encapsulated within two Li atoms and the corresponding DOS plot. The 2Li@Be₁₂O₁₂ structures underwent a HOMO upshift to -3.34 eV (the HOMO level of pristine

 $Be_{12}O_{12}$ was -10.63 eV). Moreover, the LUMO level was upshifted to -0.35 eV (the LUMO level of pristine $Be_{12}O_{12}$ was -0.48 eV). As a result, $2Li@Be_{12}O_{12}$ had an energy gap of 2.96 eV (69.44% lower than pristine $Be_{12}O_{12}$). Encapsulation into two Li atoms led to a dramatic electronic alternation of $Be_{12}O_{12}$ compared to one Li-capsulated Be₁₂O₁₂. 2Li@Be₁₂O₁₂ was calculated to be a 15.09% lower energy gap than $Li@Be_{12}O_{12}$. Thus, local states exist in the energy gap range of $2Li@Be_{12}O_{12}$, potentially enhancing Be₁₂O₁₂'s reactivity. It is worth mentioning that Li atoms moved toward the octagonal rings during the $Be_{12}O_{12}$ reaction (Figure 11). Then, the H₂CO molecule was situated above the O and Be atoms and on top of the porous sites of the tetragonal and hexagonal rings of Be₁₂O₁₂ to examine its adsorption onto 2Li@Be12O12.

Figure 10. Adsorption energy as a function of adsorption distance of $H_2CO/Li@Be_{12}O_{12}$ complex, stable model (S1).

Three stable H₂CO/2Li@Be₁₂O₁₂ configurations were derived after relaxation. Table 4 shows the adsorption energy values and electronic properties. According to Figure 12, Z3 had the highest stability. In Z3, the H₂CO molecule adsorbed from the C head onto the octagonal ring above the Be atom (\sim 1.97 Å). It was measured to have an adsorption energy of approximately -0.42 eV, suggesting exothermic H₂CO adsorption. Complexes Z1, Z2, and Z3 had H₂CO molecule charges of 0.114, 0.068, and 0.323 e, respectively. The NBO results revealed a relative charge transfer from H₂CO to 2Li@Be₁₂O₁₂. Figure 12 depicts the DOS plot of the H₂CO/2Li@Be₁₂O₁₂ system. As can be seen, Z3 underwent a 23.14% energy gap decline to 2.71 eV upon H_2CO adsorption. Based on the DOS results, $H_2CO/2Li@Be_{12}O_{12}$ remains a semiconductor. Thus, it can be said that $H_2CO/2Li@Be_{12}O_{12}$ is electronically sensitive to H_2CO adsorption. The energy gap is indeed a determinant of electrical conductivity. The energy gap and electrical conductivity are classically related [34]:

$$\sigma \propto \exp(-\text{Eg/2KT}) \tag{3}$$

In which K is the Boltzmann constant, while σ denotes electrical conductivity. As can be seen, electrical conductivity is lower at a more significant energy gap at a given temperature. Be₁₂O₁₂ is expected to change in electrical conductivity due to H₂CO adsorption onto Li@Be₁₂O₁₂ and 2Li@Be₁₂O₁₂.

The substantial energy gap alternations suggest that $Be_{12}O_{12}$ is electronically sensitive to H_2CO adsorption. This is a practical approach to enhance the H₂CO sensitivity of BeO since bare Be12O12 clusters may not detect H₂CO. Hence, it is possible to detect H₂CO through the pre- and post-adsorption electrical conductivity levels of Li-encapsulated Be₁₂O₁₂. Li@Be₁₂O₁₂ and 2Li@Be₁₂O₁₂ are potential alternatives for H₂CO detection applications. H₂CO molecules tend to be adsorbed onto Be₁₂O₁₂ on top of the Be atom. The primary localisation of LUMO on the Be atom explains H₂CO adsorption above the Be head (Figure 2). The NBO results suggest a change transfer from Be to the adjacent O atoms on $Be_{12}O_{12}$, implying that the Be-O bond is ionic. The adsorption mechanism includes the polarisation of the H₂CO electron clouds by the positive charge on Be, leading to electrostatic interactions. The adsorption sites for H₂CO were the Be atoms of positive charge on the surface.

Figure 11. Structure of optimised 2Li into Be₁₂O₁₂₍fullerene-like) and DOS plot.

Figure 12. Configurations for stable adsorption of H₂CO on the 2Li@ Be₁₂O₁₂ (fullerene-like) and (DOS) plot.

Energy (eV)

System	E _{ad}	Е _{НОМО}	E _{LUMO}	Eg	*∆Eg (%)	**Q _T (e)	
2 Li@Be ₁₂ O ₁₂	_	-3.34	-0.35	2.96	69.44	-	
Z1	-0.20	-3.21	-0.40	2.79	13.64	0.11	
Z2	-0.16	-3.24	-0.04	3.01	-6.32	0.06	
Z3	-0.42	-3.17	-0.91	2.71	23.14	0.32	

Table 4. Calculated adsorption energy (Eads), HOMO energies (E_{HOMO}), LUMO energies (E_{LUMO}), and HOMO-LUMO energy gap (Eg) for H₂CO molecule adsorption on 2 Li-encapsulated Be₁₂O₁₂ fullerene-like systems in eV.

*The change in HOMO-LUMO gap of Be₁₂O₁₂ fullerene-like after H₂CO adsorption **QT is defined as the average natural bond orbital (NBO) population analysis charge on the molecule.

The H₂CO-Li⁺@Be₁₂O₁₂ interaction is stronger than the $H_2CO-Be_{12}O_{12}$ interaction. The adsorption energy of $H_2CO/Li^+@Be_{12}O_{12}$ was obtained at -1.57 eV, while that of $H_2CO/Be_{12}O_{12}$ was -0.4 eV at the highest stability levels, which may have arisen from the charge transfer; the charge transfers from H₂CO to Be₁₂O₁₂ and Li⁺@Be₁₂O₁₂ were quantified to be 0.25 and 0.291 e, respectively, at the highest stability levels. It can be concluded that Li@Be12O12 and 2Li@Be12O12 are more desirable than Li⁺@Be₁₂O₁₂ and bare Be₁₂O₁₂ for H₂CO detection purposes. Furthermore, a rise in the number of Li atoms reduced and weakened H₂CO adsorption; Li@Be₁₂O₁₂ had an absorption energy of -1.09 eV, whereas that of $2Li@Be_{12}O_{12}$ was -0.42 eV, implying that the encapsulation of Be₁₂O₁₂ into one and two Li atoms would require higher sensitivity in general.

Conclusion

Because of its toxicity and volatility, formaldehyde is harmful to human health. Therefore, formaldehyde removal is important for environmental pollution study. This work performed DFT to evaluate H₂CO adsorption onto bare $Be_{12}O_{12}$, $Li^+@Be_{12}O_{12}$, $Li@Be_{12}O_{12}$, and 2Li@Be12O12 through adsorption energy, charge transfer, and HOMO-LUMO energy gap. The H₂CO molecules were observed to undergo weak adsorption unto the bare fullerene-like Be₁₂O₁₂ as it experienced slight electronic alternation due to the adsorption. $H_2CO/Li^+@Be_{12}O_{12}$, $H_2CO/Li@Be_{12}O_{12}$, and H_2CO /2Li@Be12O12 were found to have higher adsorption energy than H₂CO/Be₁₂O₁₂. The DOS plots demonstrated that H₂CO adsorption diminished the energy gap of Li@Be_{12}O_{12} from 3.49 to 2.84 eV and that of 2Li@Be12O12 from 2.96 to 2.71 eV at the highest stability levels. Hence, Li@Be12O12 and 2Li@Be12O12 have sufficient H₂CO sensitivity. According to the DOS results, Li@Be12O12 and 2Li@Be12O12 can be considered favourable detectors of H₂CO.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

- S. Zhuiykov, W. Wlodarski and Y. Li, Sens. Actuators, B Chem. 77, 484–490 (2001). DOI:10.1016/S0925-4005(01) 00739-0.
- [2] K. Fukui and M. Nakane, Sens. Actuators B, Chem.
 25, 486–490 (1995). DOI:10.1016/0925-4005(95)85 104-6.
- [3] M. Nayebzadeh, H. Soleymanabadi and Z. Bagheri. Monatsh. Chem. – Chem. Mon. 145 (11), 1745–1752 (2014). DOI:10.1007/s00706-014-1239-0.
- [4] M. Nayebzadeh, A.A. Peyghan and H. Soleymanabadi.
 Physica E 62, 48–54 (2014). DOI:10.1016/j.physe.2014.
 04.016.
- [5] A.A. Peyghan, S.A. Aslanzadeh and H. Soleymanabadi. Monatsh. Chem. – Chem. Mon. 145 (8), 1253–1257 (2014). DOI:10.1007/s00706-014-1177-x.
- [6] H. Soleymanabadi and J. Kakemam. Physica E 54, 115–117 (2013). DOI:10.1016/j.physe.2013.06.015.
- [7] H. Soleymanabadi and A.A. Peyghan. Comput. Mater. Sci.
 79, 182–186 (2013). DOI:10.1016/j.commatsci.2013.06.
 027.
- [8] A.A. Peyghan, H. Soleymanabadi and M. Moradi.
 J. Phys. Chem. Solids 74 (11), 1594–1598 (2013).
 DOI:10.1016/j.jpcs.2013.05.030.
- [9] P. Bechthold, M.E. Pronsato and C. Pistonesi, Appl. Surf. Sci. 347, 291–298 (2015). DOI:10.1016/j.apsusc.2015.03. 149.
- [10] S. Iijima, Nature 354, 56–58 (1991). DOI:10.1038/354 056a0.
- [11] A.A. Peyghan, H. Soleymanabadi and H.Z. Bagheri, J. Iran. Chem. Soc. 12, 1071–1076 (2015). DOI:10.1007/ s13738-014-0567-7.
- S. Mousavi-Khoshdel, P. Jahanbakhsh-bonab and E. Targholi. Phys. Lett. A 380 (41), 3378–3383 (2016).
 DOI:10.1016/j.physleta.2016.07.067.
- [13] P. Jahanbakhsh-Bonab, M.D. Esrafili, A.R. Ebrahimzadeh and J.J. Sardroodi. J. Mol. Liq. **338**, 116716 (2021). DOI:10.1016/j.molliq.2021.116716.
- [14] P. Jahanbakhsh-Bonab, M.D. Esrafili, A.R. Ebrahimzadeh and J.J. Sardroodi. J. Mol. Liq. **341**, 117277 (2021). DOI:10.1016/j.molliq.2021.117277.
- [15] P.J. Bonab, M.D. Esrafili, A.R. Ebrahimzadeh and J.J. Sardroodi. J. Mol. Graphics Modell. **106**, 107908 (2021). DOI:10.1016/j.jmgm.2021.107908.
- [16] P. Jahanbakhsh, A. Bonab, Rastkar Ebrahimzadeh and J.Jahanbin Sardroodi. Sci. Rep. 11 (1), 6384 (2021). DOI:10.1038/s41598-021-85260-z.
- [17] Y. Yong, S. Lv, R. Zhang, Q. Zhou, X. Su, T. Li and H. Cui, RSC Adv. 6 (92), 89080–89088 (2016). DOI:10.1039/C6RA17834K.

- [18] M. Li, Y. Wei, G. Zhang, F. Wang, M. Li and H. Soleymanabadi. Physica E 118, 113878 (2020). DOI:10.1016/j. physe.2019.113878.
- [19] X. Wu, Z. Zhang and H. Soleymanabadi. Solid State Commun. **306**, 113770 (2020). DOI:10.1016/j.ssc.2019.113 770.
- [20] H. Goudarziafshar, M. Abdolmaleki, A.R. Moosavi-zare and H. Soleymanabadi. Physica E 101, 78–84 (2018). DOI:10.1016/j.physe.2018.03.001.
- [21] R. Amirkhani, M.H. Omidi, R. Abdollahi and H. Soleymanabadi. J. Cluster Sci. 29 (4), 757–765 (2018).
 DOI:10.1007/s10876-018-1398-y.
- [22] D. Hossain, F. Hagelberg, C.U. Pittman and S. Saebo, J. Phys. Chem. C 111, 13864–13871 (2007). DOI:10.1021/ jp0735839.
- [23] K. Joshi, R. Jain, R. Pandya, B. Ahuja and B. Sharma, J. Chem. Phys. 111, 163–167 (1999). DOI:10.1063/1.479 262.
- [24] L. Ren, L. Cheng, Y. Feng and X. Wang, J. Chem. Phys. 137, 014309-1-5 (2012).
- [25] W. Wu, P. Lu, Z. Zhang and W. Guo, ACS Appl. Mater. Interfaces 3, 4787–4795 (2011). DOI:10.1021/am201 271j.
- [26] Z. Rostami and H. Soleymanabadi. J. Mol. Liq. 248, 473–478 (2017). DOI:10.1016/j.molliq.2017.09.126.
- [27] M. Noei, H. Soleymanabadi and A.A. Peyghan. Chem.
 Pap. 71 (5), 881–893 (2017). DOI:10.1007/s11696-016-0015-5.
- [28] S. Jameh-Bozorghi and H. Soleymanabadi. Phys. Lett. A 381 (6), 646–651 (2017). DOI:10.1016/j.physleta.2016. 11.039.
- [29] A. Rastgou, H. Soleymanabadi and A. Bodaghi. Microelectron. Eng. 169, 9–15 (2017). DOI:10.1016/j.mee. 2016.11.012.

- [30] J. Hosseini, A. Bodaghi and H. Soleymanabadi. Russ. J. Phys. Chem. A. 91 (1), 116–123 (2017). DOI:10.1134/S0036024417010095.
- [31] Z. Rostami and H. Soleymanabadi. J. Mol. Model. 22 (4), 70 (2016). DOI:10.1007/s00894-016-2954-8.
- [32] V. Vahabi and H. Soleymanabadi. J. Mex. Chem. Soc. 60 (1), 34–39 (2016).
- [33] S.F. Rastegar, H. Soleymanabadi and Z. Bagheri. J. Iran. Chem. Soc. 12 (6), 1099–1106 (2015). DOI:10.1007/ s13738-014-0570-z.
- [34] A.A. Peyghan and H. Soleymanabadi. Curr. Sci. 1910– 1914 (2015).
- [35] S.F. Rastegar, A.A. Peyghan and H. Soleymanabadi. Physica E 68, 22–27 (2015). DOI:10.1016/j.physe.2014.12.005.
- [36] N.L. Hadipour, A. Ahmadi Peyghan and H. Soleymanabadi. J. Phys. Chem. C 119 (11), 6398–6404 (2015). DOI:10.1021/jp513019z.
- [37] J. Baima, A. Erba, M. Rérat, R. Orlando and R. Dovesi, J. Phys. Chem. C 117, 12864–12872 (2013). DOI:10.1021/jp402340z.
- [38] D. Groh, R. Pandey, M.B. Sahariah, E. Amzallag, I. Baraille and M. Rerat, J. Phys. Chem. Solids **70**, 789–795 (2009). DOI:10.1016/j.jpcs.2009.03.013.
- [39] S.F. Rastegar, N.L. Hadipour, M.B. Tabar and H. Soleymanabadi. J. Mol. Model. **19** (9), 3733–3740 (2013). DOI:10.1007/s00894-013-1898-5.
- [40] J. Beheshtian, H. Soleymanabadi, A.A. Peyghan and Z. Bagheri. Appl. Surf. Sci. 268, 436-441 (2013). DOI:10. 1016/j.apsusc.2012.12.119.
- [41] J. Beheshtian, H. Soleymanabadi, M. Kamfiroozi and A. Ahmadi. J. Mol. Model. 18 (6), 2343–2348 (2012). DOI:10.1007/s00894-011-1256-4.
- [42] Y. Mao and H. Soleymanabadi. J. Mol. Liq. 308, 113009 (2020). DOI:10.1016/j.molliq.2020.113009.