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Preparation of drug nanoparticles has been studied and evaluated in this study based on supercritical-
based processing as green technology. Computational works have been conducted to evaluate the possi-
bility of manufacturing nanomedicine using this novel technology, and the results are compared with
experimental measurements. Chlorothiazide, used as a diuretic and as an antihypertensive was consid-
ered as model drug in this work. For the modeling, we used a small data set consisting of two input fea-
tures, namely temperature and pressure, and one output, namely solubility, in order to analyze the data.
Tree ensemble models, including bagging and boosting based on decision trees, have been selected to
analyze and model the data. Extremely randomized Trees (Extra Tree), Adaptive Boosting (AdaBoost),
and Gradient Boosting models are specifically chosen for this modeling. The hyperparameters of the mod-
els were optimized with the help of genetic algorithm (GA) and finally the optimal models were obtained
for each of the three methods. Finally, the models were evaluated with different methods. Based on the
evaluations, the gradient boosting model showed the best results, and its score was 0.9820 with the coef-
ficient of determination (R2-score) criterion. Also, the error of the final model with the MEA criterion is
1.51 � 10-2, with the RMSE criterion equal to 2.51 � 10-2, and the MAPE error value is 1.59 � 10-2.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction vents of interest. Given that crystallization is the key step in pro-
Measurement of the drug solubility is a key step towards drug
manufacturing development. This task is usually done by a variety
of methods among which the method of gravimetric is facile and
straightforward to be conducted. The method of gravimetric helps
finds the amount of solubility for different drugs in particular sol-
duction of small-molecular pharmaceuticals, the solubility
measurement is required to conduct the crystallization step.
Indeed, crystallization is a kind of solid–liquid separation in which
the solubility is the key parameter which should be reduced in
order to remove the solid from the solution [1–3].

The measurement of drug solubility can be also useful for prepa-
rationof nanomedicinewhich is of great importance for pharmaceu-
tical industry as it can enhance the drug solubility and consequently
the drug bioavailability [4]. Using the bottom-up approach, the drug
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Table 1
The Data points of drug solubility used in this work [40].

T (K) P (bar) y (�105)

308 130 0.488
308 170 0.597
308 210 0.661
308 250 0.741
308 290 0.761
318 130 0.466
318 170 0.628
318 210 0.721
318 250 0.79
318 290 0.818
328 130 0.48
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particles need to be dissolved in a proper solvent, and then nanopar-
ticles are formed in the process [5–7]. Therefore,measuring the drug
solubility is theprerequisite step to assesswhether thedrug is a suit-
able candidate for thenanonization [8,9]. In recentyears, the solubil-
itymeasurements in supercritical solvents have been proposed for a
new and green method for preparation of drug nanoparticles. The
process mainly uses CO2 as the supercritical solvent, and the medi-
cine is dissolved in it for preparationof drugnanoparticles.However,
researchhave beendoneonmeasuring and correlating the solubility
data via different approaches [10–14].

Given that the experimental measurements of medicine solubil-
ity in supercritical solvents is costly and require huge amount of
materials and time, computational models can be employed for
better performance, and saving time and cost of measurements
[15,16]. The computational models can be used based on the mech-
anistic models, or statistical models to fit the solubility data. The
method of thermodynamics and machine learning are among the
most commonly used methods for correlation of solubility data
for different drugs in supercritical solvents, such as carbon dioxide.
For these models, several data points are required for the training,
and the model can predict the solubility for the entire range of
operational conditions. In this area, usually temperature and pres-
sure are regarded as the most important operational parameters to
change the drug solubility values.

Machine learning (ML) has started to gain a great deal of trac-
tion in many scientific disciplines as these methods are increas-
ingly replacing classical computing techniques in a broader range
of scientific sectors as they take on the roles previously played
by them [17]. There is no doubt that ensemble methods are one
of the most trending groups of ML methods on the market today.
By aggregating predictions from multiple base models, an ensem-
ble can improve the generality and accuracy of a model by increas-
ing the generalization. Among the most helpful methods of ML
algorithms of this type, bagging and boosting are the ones that
are most commonly used [18].

Multiple base learners can be trained concurrently using bag-
ging (bootstrap aggregation). Ensemble models created by this
method are more robust than core models. Bagging involves divid-
ing the original dataset into many subsets (bags) with replace-
ments. Each subset is then generated with a basic model. All
models are then run independently, and their projections are com-
bined to make the final predictions [19,20].

Boosting, on the other hand, works with the entire dataset. To
begin with, all data points are equally weighted. Every time an iter-
ation is performed, data points with errors are given a higher
weight. The predictions are based on a novel model [21,22].

Here, for modeling the process, we utilized three bagging and
boosting techniques:

Adaptive Boosting (AdaBoost).
Extremely Randomized Trees (Extra Tree).
Gradient Boosting.
The models have been used to correlate the solubility of a medi-

cine, which is Chlorothiazide in CO2 as the solvent at supercritical
state. The inputs to the models are temperature and pressure of
the process, while the only considered output is the Chlorothiazide
solubility in the solvent. Therefore, multiples models with two
inputs and one output are created to choose the best one in terms
of accuracy.
328 170 0.62
328 210 0.795
328 250 0.847
328 290 0.919
338 130 0.417
338 170 0.641
338 210 0.851
338 250 0.911
338 290 1.012
2. Material and methods

2.1. Dataset of drug solubility

We used a dataset in this work for the model development.
There are two inputs that are used in this study, which are temper-
2

ature (T) and pressure (P), which are all displayed in Table 1, which
is the data set used in this study. The drug used in this study is
Chlorothiazide, and its solubility values have been taken from liter-
ature [40]. Aside from that, the only output is a measure of solubil-
ity. Indeed, the variations of drug solubility versus temperature
and pressure are used in the model to understand the relationship
between these parameters. Also, the explanation of the variables of
this data set is shown in Fig. 1. Fig. 2 also shows the outlier analysis
of this data, where only 2 data points are identified as outliers and
these two are not used in the training steps. Once the model has
been trained, then we will use it to describe the effect of T and P
on the variations of Chlorothiazide solubility.

2.2. Methods of computations

As we mentioned before, in this research, we have used multi-
ple ensemble methods based on decision trees, which we will dis-
cuss briefly in the rest of this section. The methods have been
chosen based on the number of dataset and also their fitting capa-
bility for this solubility dataset. We will try to choose the best
model in terms of accuracy by comparing them.

Multiple base (or weak) prediction models can be coupled to
build an ensemble learning model, which outperforms a single
model in terms of performance. According to Schapire and Freund
[23] an ensemble model based on updating instance weights
according to prior predictors can improve the performance of base
predictors [24,25].

Models can be adaptively enhanced to address a variety of prob-
lems, as implied by the title. A simple model’s simplicity of struc-
ture makes it a reliable generalizer. In spite of their ease of use,
they cannot handle complex problems due to their inherent bias.
In contrast, complicated models are more likely to be overfitted
and are more difficult to implement in practice because of their
complexity [26]. A technique called AdaBoost (Adaptive Boosting)
is proposed to solve such problems [27,28].

Boosting is another ensemble learning technique that can be
used to improve the learning process through ensemble learning.
The method of prediction entails a sequence of base predictors
instead of a single predictor, which will be averaged together, in
order to increase the accuracy of the prediction, rather than relying
on a single predictor [29,30]. There is a stage-wise process that is
adopted by this method where base estimators (in this case deci-
sion trees) are successively fitted in order to remove bias from
the model. During the optimization process, a new learner is intro-
duced at each phase in order to optimize the loss function in order



Fig. 1. Distribution of variables.

Fig. 2. Cook Distance outlier analysis of the solubility dataset.

Table 2
Optimal Hyper-parameters of the employed models.

Models Number of Trees Ma

AdaBoost 240 16
Extra Tree 600 5
Gradient Boost 210 22
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to reach the optimal solution. As a result of using the training data,
the first learner tries to reduce the loss function to the smallest
value possible as a result of using the training data [31–34]. Based
on the errors, the following estimators are applied. A gradient
boosting algorithm is presented below [32–36]:

Initialize F0 xð Þ ¼ argminp
PN

i�1L yi;Pð Þ
For m 2 ½1; 2; � � � ; M� :
1. Negative gradient calculation

y
�
i ¼ � @Lðyi ;F xið ÞÞ

@Fxi

h i
2. Create a model

am ¼ argmina;b
PN

i¼1 y
��bhðxi; am
h i2

3. Assign a gradient

descent step size to

pk ¼ argminp
PN

i¼1Lðyi; Fm�1 xið Þ þ ph xi; að ÞÞ4. Modify the
estimation of F(x)
Fm xð Þ ¼ Fm�1 xð Þ þ pkhðx; amÞOutput: Regression function
aggregated as Fm xð Þ
x depth Splitter Learning Rate

Best 0.81
Random –
Best 1.29



Fig. 3. (AdaBoost) Experimental and modeled values.

Fig. 4. (Extra Tree) Experimental and modeled values.
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A tree-based approach, Extra Trees (ET) are similar to random for-
ests. In order for ET to be able to categorize and analyze data in a
way that is relevant to the user, it has to highly randomize both
the particularities of each tree node and the cut point decision dur-
ing its division [37,38].
4

As far as the way they grow multiple trees and divide nodes
using random subsets of functions is concerned, both models are
identical. However, the significant differences is that ET relies on
randomized splits rather than bootstrap observations, instead of
optimum splits [34,39].



Fig. 5. (Gradient Boosting) Experimental and modeled values.

Fig. 6. Gradient boosting (Be

Table 3
Coefficient of determinations of three tuned models.

Models Train R2 Test R2

AdaBoost 0.9496 0.7998
Extra Tree 0.9996 0.8681
Gradient Boost 0.9998 0.9820

Table 4
Final Model Results.

Models MAE RMSE MAPE

AdaBoost 6.27 � 10-2 7.05 � 10-2 7.91 � 10-2

Extra Tree 4.86 � 10-2 5.90 � 10-2 6.25 � 10-2

Gradient Boost 1.51 � 10-2 2.51 � 10-2 1.59 � 10-2

Y. Li, A.A. Alameri, Z.A. Farhan et al. Journal of Molecular Liquids 370 (2023) 120984

5

3. Results and discussions

The introduced models need to be optimized in terms of their
hyper-parameters to increase their accuracy and generality. For
this purpose, we have used the genetic algorithm in this research.
The final results of the optimal parameters are indicated in
Table 2.

Figs. 3 to 5 show the distance of the actual values from the val-
ues predicted by the models (red for training and blue for testing).
These figures show the fact that gradient boosting is more accurate
and more general than the other two models. It is also observed
that all the tuned models perform well in correlation of the solubil-
ity dataset, and great R2 more than 0.9 has been reported for the
st model) residuals plot.
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training step. Tables 3 and 4 also show the numerical comparison
of the models and statistical analysis, which confirm this fact that
the methods are properly selected and tuned for describing drug
solubility in the supercritical CO2.

The residual of gradient boosting model is illustrated in Fig. 6,
and the 3D representations of the models’ outputs are indicated
in Figs. 7–9 for the three employed models in this work. It is clearly
indicated that all models can show the variations of drug solubility
with the temperature and pressure, with almost direct relation-
ship. In fact, the drug solubility should be increased with enhanc-
ing the pressure (X2) due to increasing the density and solvation of
the solvent which can take more drug to be dissolved at higher
pressure. This trend can be clearly observed in the 3D plots which
confirm the validity of the developed models in this study.
Fig. 7. Final 3d Surface (AdaBoost).

Fig. 8. Final 3d Surface (Extra Tree).

Fig. 9. Final 3d Surface (Gradient Boosting).
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4. Conclusions

We optimized a number of machine learning methods for the
correlation of a drug solubility to the temperature and pressure.
The data set for this study consisted of two inputs, namely temper-
ature and pressure, and one output, namely solubility of drug
which is Chlorothiazide. To analyze and model the data, a number
of ensemble methods have been chosen, including bagging and
boosting based on decision trees. We have specifically selected
Extremely Random Trees (Extra Tree), Adaptive Boosting (Ada-
Boost), and Gradient Boosting models for this modeling task. Using
a genetic algorithm (GA), the hyperparameters of the models were
optimized and finally, the optimal models were determined for
each of the three methods. Lastly, different evaluation methods
were applied to the models. According to the evaluations, the gra-
dient boosting model had the best results, with a coefficient of
determination (R2) value of 0.9820. Also, the error of the final
model with the MEA criterion is 1.51 � 10-2, with the RMSE crite-
rion equal to 2.51 � 10-2, and the MAPE error value is 1.59 � 10-2.
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