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A B S T R A C T

Due to global climate change and energy market turmoil, the world is seriously pushing to switch to renewable 
and diversifying energy sources. The building sector consumes an amount of energy, accounting for approxi-
mately 40 % of global energy. Therefore, the concept of zero-energy buildings has become more realistic than 
before. This study reveals the latest developments in zero-energy buildings through a comprehensive literature 
review of the past ten years. Emphasis has been placed on buildings’ heating, ventilation, and cooling systems, as 
they constitute the most important part of the energy demand. Also, the role of negative energy resulting from an 
improved building envelope through the design of a building compatible with the surrounding environment, 
thermal insulation materials, phase change materials, vegetation cover, etc. A review was also made of the most 
significant renewable energy technologies, which include solar energy installations, wind turbines, and 
geothermal heat exchangers. The study showed that three main axes must be achieved to reach an energy-free 
building: Reducing energy waste through the energy-conserving building envelope and improving HVAC sys-
tems. Raising the efficiency of the performance of renewable energy facilities by using hybrid systems with the 
ability and flexibility to respond to changing energy demand. These three axes are an integrated approach to 
achieving ZEBs; none can be neglected. This study provides important references for researchers, institutions, 
and decision-makers to unify efforts to achieve ZEBs. It also aims to attract attention and focus research by 
raising questions and identifying gaps that future research efforts can address.

Nomenclature

Abbreviations Meaning Abbreviations Meaning

ZEBs zero energy buildings EEV electronic expansion 
valve

HVAC heating, ventilation, 
and cooling

GEAHE geothermal earth–air 
heat exchanger

PV photovoltaics IAQ indoor air quality
DHW domestic hot water MMV mixed-mode 

ventilation
HPWH heat pump water 

heaters
MEE membrane energy 

exchangers

(continued on next column)

(continued )

Abbreviations Meaning Abbreviations Meaning

PCM phase-change 
materials

BAPV building-applied 
photovoltaics

HP heat pump BIPV building-integrated 
photovoltaics

ASHP air source heat pump PV/T photovoltaic and 
thermal systems

COP coefficient of 
performance

BIPV/T building integrated 
photovoltaic-thermal

DSCHP double stage coupled 
heat pumps

TE thermoelectric

(continued on next page)
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(continued )

Abbreviations Meaning Abbreviations Meaning

WSHP water source heat 
pump

TEG thermoelectric 
generator

ASAHP air source absorption 
heat pump

HAWT horizontal-axis wind 
turbines

GSHP ground source heat 
pump

VAWT vertical-axis wind 
turbines

VCASHP vapor compression 
air source heat pump

EATHE earth air tunnel heat 
exchanger

VRF variable refrigerant 
flow

1. Introduction

Action to reduce the impact of climate change is crucial. In the Paris 
Agreement, member states set several goals that must be achieved to 
control the rise in global temperature. One of these objectives is a low- 
carbon energy sector, which accounts for two-thirds of world emissions. 
Renewable energy can provide 90 % of the CO2 emission reductions 
required by 2050 when combined with improvements in energy effi-
ciency [1]. Statistics show that worldwide energy consumption can be 
defined by three main consumer sectors that combine different contri-
butions: the industrial, transportation, and construction sectors. Energy 
consumption in the building sector in the United States and the Euro-
pean Union is about 40 %, while in China, it is 27.3 % [2–4]. The energy 
intensity of buildings in China is much lower than in the United States 
and the European Union, where the most significant influence in China 
is related to the industrial sector [5].

Zero-energy buildings (ZEBs) are any building or facility character-
ized by their total energy consumption equal to zero for a given period 
and their carbon emissions equivalent to zero. This building typically 
uses less energy than traditional buildings [6]. These types of buildings 

generate and then consume their energy. Therefore, most buildings are 
independent of the electricity grid [7]. Here, we must point out that the 
construction of these buildings was aimed at applying the proposed 
stringent environmental standards to address serious environmental is-
sues [8]. The concept of the ZEBs has been proposed since the 1970s in 
the context of the oil shock of the time and fears of the consequences of 
becoming utterly dependent on fossil fuels [6,9]. ZEBs rely on renewable 
sources to meet their energy needs. For this purpose, several technolo-
gies suitable for installation are used in buildings. The most prominent 
technologies currently available are solar thermal collectors, photovol-
taic panels (PV), small wind turbines, geothermal heat exchangers, 
biomass technologies, and micro-hydropower. In addition to energy 
storage technologies, batteries are the most prominent technologies for 
storing electricity. Also, hydrogen cells are a promising energy storage 
technology that needs further development [10]. When dealing with the 
issue of ZEBs, it is essential to know their exact energy consumption 
patterns. The energy consumption pattern in buildings is impacted by 
several factors, including climate, energy costs, availability of natural 
resources, local and national energy policies, technological develop-
ment, and social and cultural factors [11–14]. With different energy 
patterns, it isn’t easy to define a single methodology for achieving ZEBs 
that can be applied anywhere. Each region’s way of attaining ZEBs may 
share parts and differ in other parts [15,16].

By reviewing the literature that dealt with the issue of ZEBs, three 
main axes can be identified that must be addressed to achieve ZEBs. The 
first axis is towards negative energy technologies, including designing 
the building’s outer envelope, window and door area, thermal insulation 
methods, waste energy reduction, etc. The second axis is achieved using 
energy-saving building services, such as HVAC systems, hot water, and 
lighting. The third axis will be the energy generation from renewable 
sources and the selection of appropriate technologies in line with the 
region’s climatic conditions, as in Fig. 1 [6,17–19]. This study will focus 
on the energy required for heating, ventilation, and cooling (HVAC) in 
ZEBs. HVAC systems make up the most significant amount of energy 

Fig. 1. The main axes towards achieving zero-energy buildings (ZEBs) [18].
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consumption in buildings. If this part of energy consumption is 
neutralized by relying on renewable energy sources, we have come a 
long way in achieving ZEBs. This study differs from previous review 
studies by following a more comprehensive and precise scientific 
methodology in selecting and reviewing relevant literature for the last 
ten years, which will be explained in detail in the second section of this 
study.

The rest of this paper is structured as follows: The next section pre-
sents the methodology employed in this study to choose relevant review 
papers. The subsequent section centers on energy efficiency measures 
within Zero Energy Buildings (ZEBs), specifically addressing the design 
aspects of building envelopes and windows. The subsequent section 
delves into heating, cooling, ventilation, and heat recovery systems, 
encompassing both passive and active approaches. Moving on to the 
fifth section, we examine the subject of energy generation for ZEBs 
through renewable sources, such as solar, wind, and geothermal energy 
systems, whether independent or hybrid configurations. The sixth sec-
tion is devoted to discussion to clarify and criticize previous studies. 
Finally, the seventh section encapsulates the review’s conclusions and 
provides recommendations for future research endeavors.

2. Methodology

This study was based on a literature review published in scientific 
journals. The research methodology used Scopus and Web of Science 
databases because these two databases contain most of the scientific 
papers interested in this topic [20,21]. The research resulted in 14,520 
scientific papers using keywords such as ZEBs, HVAC technologies for 
buildings, building energy efficiency, and renewable energy sources. 
Then, systematic filtering was conducted based on criteria to select the 
most recent and relevant papers to the subject of the study, etc., to 
obtain 436 papers [22]. A comprehensive bibliometric analysis was 
carried out using the R and R Studio software to identify the chrono-
logical development of the topic, the frequency analysis of keywords, 
and the cross-citation analysis of publications and prominent authors 
[23]. After that, a careful manual textual screening was conducted to 
select 167 papers to be the reference for this study.

3. Energy efficiency measures

Energy efficiency measures in ZEBs can generally be divided into two 
main categories: reducing energy consumption and meeting energy 
demand more efficiently [19]. Applications of reduced energy con-
sumption include improved building designs (envelope, orientation, 
layout, etc.), efficient occupant behavior (opening windows when out-
door conditions are favorable, turning HVAC off when not in use, and a 
DHW drawing profile to match the capacity of HPWH production, etc.), 
and solar shading. By choosing efficient mechanical systems (e.g., HVAC 
and hot water), appliances and controls, and efficient appliances of 
buildings (refrigerators, lighting, dryers, washers, etc.), the load can be 
met with less energy expenditure [19].

The first step in achieving the goals of ZEBs is to integrate the 
building with the surrounding environment, where the architecture of 
the building plays a significant role in the exterior design that considers 
the local climatic conditions. Thus, these measures will reduce the need 
for HVAC and lighting without compromising interior comfort, signifi-
cantly reducing energy consumption in the building. Passive techniques 
can be applied in a cold climate with little solar irradiance, and at the 
same time, there is energy consumption resulting from the area’s heat-
ing and hot water supply [24]. Passive technologies may confront a 
greater challenge in climates with high temperatures and humidity to 
achieve indoor comfort and reduce as much energy consumed by 
refrigeration equipment as possible [25].

There is also an excellent role for the behavior of occupants, which is 
often overlooked or not given critical importance, as an individual’s 
cultural, social, and economic level determines their way of living and 

daily energy consumption patterns inside the building [26]. The greater 
the societal awareness of the dangers of excessive energy consumption, 
the more positively it will be reflected in the optimal use patterns. 
Ouyang et al. [27] observed that electricity consumption was reduced by 
10 % when raising awareness among occupants through awareness 
campaigns directed at rationalizing energy consumption.

3.1. Building envelope design

The most economical measures to lower a building’s energy usage 
are typically adopted during the design phase [28]. The ZEBs design is 
different from traditional construction methods to achieve 
energy-efficient use. ZEBs designers typically combine passive solar 
principles with the HVAC and lighting requirements for indoor comfort 
within a building. Sunlight, prevailing breezes, and the ground coolness 
beneath a building can maintain constant indoor temperatures with 
minimal mechanical equipment.

In general, when designing buildings, environmental, social, cul-
tural, and functional aspects are considered, and recently, the focus has 
begun on internal thermal comfort, energy consumption reduction, and 
sustainable development. However, no unified approach to building 
design achieves these goals [29]. This is primarily because of the intri-
cate interplay between systems for producing, consuming, and storing 
energy, as well as systems that are controlled automatically and 
manually. Also, despite the continuous development of climate-adapted 
buildings, they cannot be considered mature yet [30].

The external walls of the building have the most significant role in 
conserving energy inside the building as they bear the burden of 
different climatic conditions. However, they are not the only ones that 
require good insulation; there are several places where leakage can 
occur. Therefore, different insulators must be used to conserve energy 
inside the building [31]. Insulating materials can also be classified ac-
cording to their chemical composition, such as organic or inorganic 
materials, compounds, or new technological compounds, as shown in 
Fig. 2 [32]. Researchers sought low-cost and high-efficiency alternatives 
to commonly used insulating materials. Cuce et al. [33] proposed using 
novel insulating plaster with different thicknesses. While the heat 
transfer coefficient (U-value) before insulation was 5.5 W/m2K, its total 
value became 2.86 W/m2K, decreasing 47.9 % after using the novel 
insulating plaster. Amani and Kiaee [34], analyzing the condition of a 
building in an area with a cold winter and hot summer, found that 
multilayer insulating materials could cut energy demand by up to 70 %. 
They considered this an effective way to upgrade traditional buildings to 
ZEBs. To improve the insulation of traditional building envelopes and 
make them more energy efficient, Cuce et al. [35] introduced the use of 
aerogel in a 1930s building in the UK by reinforcing the walls with an 
aerogel blanket. The results showed an improvement in the heat loss 
coefficient (HLC) from 17.15 to 6.29 W/K.

The building envelope improvement is not limited to adding insu-
lating materials only. There are innovative methods that can be applied 
to achieve multiple goals. Recent studies have shown that using mate-
rials reflecting solar radiation on the building walls reduced the energy 
consumption needed to cool indoor spaces the building in regions with 
warm climates. It can also contribute to reducing the phenomenon of 
heat islands in cities due to the surfaces absorbing solar radiation during 
the day and re-emitting it at night [36–38]. In an interesting recent 
experimental investigation, Cuce et al. [39] proposed using bamboo 
fiber-reinforced briquettes as a sustainable solution with high thermal 
insulation properties. Indeed, the results showed that the heat transfer 
coefficient (U-value) value was (4.698, 3.94, 2.77) W/m2K when using 
bamboo fibers at rates of (2 %, 4 %, 6 %), a reduction of 49.9 % at 6 %.

Using phase-change material (PCM) [40,41] or high-density mate-
rials such as soil and concrete [42,43] can raise the building’s thermal 
mass through the slow reactions of these materials in gaining and losing 
heat, which reduces the temperature change between night and day. 
However, increasing the building’s thermal mass may not be helpful in 
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all climatic conditions or irregular usage patterns.
On the other hand, Domjan et al. [44] presented the idea of an 

all-glass building consisting of advanced glass composed of six layers 
and building-integrated photovoltaic facade structures while measuring 
the performance in different climatic conditions. Results showed a 36 
%–48 % reduction in overall energy demand. However, we must note 
that this type of building may not be suitable in hot climatic conditions 
with long hours of sunshine, which may cause the phenomenon of glass 
houses, in addition to the cultural and social determinants of the region.

It is possible to insulate the building and mitigate the effect of tem-
perature fluctuations in the surroundings of the building by making the 
outer wall consist of two double layers with an air tunnel between them; 
the outer layer is often transparent, allowing solar radiation to pass 
through. When the air mass is heated, it rises to the top of the tunnel, 
thus achieving an air current that separates the building from its sur-
roundings to achieve the principle of the solar chimney. This technology 
can contribute to interior building space ventilation without using me-
chanical devices. There are many ideas for the solar chimney presented 

Fig. 2. Classification of widely used insulating materials [32].

Fig. 3. Solar chimney patterns integrated with the facade of the building [45,47,49].
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by researchers to achieve isolation and ventilation in the building. Still, 
they differ in the mechanism of work and installation [45–49], as in 
Fig. 3.

Vegetation cover can also be an effective solution for building 
insulation [50,51]. Vegetation cover is applied to the roofs and walls, as 
studies have reported that it can prevent 80 % of the heat from leaking 
through the walls. Green roofs also consume less energy, at 2.2–16.7 % 
less than traditional roofs. [52], In addition to increasing green spaces in 
urban areas. This type is classified into two main categories: green 
facade and living wall, as shown in Fig. 4.

3.2. Windows

Windows are considered a significant building component and 
cannot be dispensed with except in exceptional cases. They play an 
important role in HVAC and passive lighting inside the building. They 
also provide visual comfort and an inside-out view [49]. However, the 
windows are the weakest part of the building envelope, primarily if 
implemented without considering climatic conditions. They are 
responsible for much of the wasted energy inside the building [53].

High-performance windows allow sunlight to pass through in winter 
and reflect in summer, providing better thermal comfort inside the 
building [54]. There are several techniques to achieve improved win-
dow glass specifications, which include multilayer glazing, 
low-emittance coatings, vacuum glazing, photovoltaic glazing, 
self-cleaning glazing, PCM glazing, smart glazing, suspended films, 
gas-filled glazing, aerogel glazing [40,55–57]. Not only that, but there 
are creative solutions, including reversible windows, transparent insu-
lation materials-filled windows, solar-absorbing windows, ventilated 
double-glazed windows, and switchable electrochromic windows [58,
59]. Some windows can control the amount of solar energy transmitted 
and reflected, including anti-reflective coated glass, tinted glass, and 
reflective glass [60–62], as shown in Table (1).

On the other hand, by precisely calculating the azimuth and solar 
declination angles, the building design can shield the windows from 
direct exposure to solar radiation. The position and direction of the 
windows can also be determined by the shape and length of the over-
hang at the window top [63].

4. Efficient HVAC systems

Heating, ventilation, and cooling systems regard buildings’ largest 
energy consumption share. Its energy consumption increases in cold and 
hot areas, especially with mechanical equipment that requires high 
energy. Recent studies have sought passive or low-energy alternatives to 
achieve ZEBs without compromising indoor thermal comfort. The 
quantities consumed by the HVAC systems can indicate that the building 

is energy efficient.

4.1. Heating

Heating the interior spaces of buildings is a significant concern in 
cold areas. Heating systems are classified according to their source and 
can be classified into two parts: The first is district heating, often 
available in urban areas with a high population density, as it is chal-
lenging to implement in rural areas but does not constitute a high per-
centage. For example, district heating makes up only 9 % of the heating 
in the European Union [72]. District heating also depends on many 
heating technologies and energy sources, including fossil fuels and 
renewable energy.

The second part is the local heating systems, where heat is produced 
in the areas to be heated. It has several forms, the most important of 
which is (an open fireplace, fireplace with embedded heat exchanger, 
fireplace with room air circulation chamber, wood and pellet burning 
stoves, electric heaters, and room air conditioners), which use fossil 
fuels and wood to produce heat, or it can rely on renewable energy 
sources, or it may combine the two types in hybrid systems [73].

The heat pump (HP) is the most common home heating type. One of 
its applications is air source heat pumps (ASHP), which are easy to 
install and maintain [74]. Bertsch and Groll [75] proposed a system 
ASHP that operates in two stages to increase its efficiency in a frigid 
climate and then experiment in a low temperature of − 30 ◦C. The results 
showed that it is possible to reach a coefficient of performance (COP) of 
2.1. Also, Wang et al. [76] presented a heating system with double stage 
coupled heat pumps (DSCHP) to improve working conditions and pro-
vide heating in cold climates. The technique combines ASHP and a water 
source heat pump (WSHP). It was field tested for a month, and the re-
sults showed a significant improvement in operation compared to the 
traditional ASHP system. Wu. et al. [77] proposed a double-stage 
coupled ASAHP system to improve the energy-saving capabilities of 
single-phase ASAHP in cold regions. The results showed an 
energy-saving rate of more than 20 %.

It is possible to raise the heat pump system’s COP value in 
conjunction with solar energy systems by integrating a solar collector, 
which increases operating flexibility in different demand conditions and 
increases heating efficiency. Liang et al. [78] reported an increase in 
COP and an energy-saving rate of 11.22 %.

Likewise, the ground source heat pump (GSHP) is characterized by 
its high energy efficiency. However, its high initial cost is considered an 
obstacle to its implementation [79].

Comparing the performance of GSHP with ASHP in dehumidification 
and ventilation of HVAC in climates with high humidity, Wu et al. [80] 
observe that the ASHP with dedicated dehumidifying reduced HVAC 
energy by 7.3 % and the energy of the building by 3.9 %, with lower 

Fig. 4. Insulating vegetation covers the walls of the building of both types: green facade and living wall [52].
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initial costs but worse thermal comfort and high humidity levels. In 
comparison, the GSHP system reduced the HVAC energy by 26 % and 
the energy of the building by 13.1 % using two wells, with a percentage 
of 29.2 % and 14.7 % for three wells.

4.2. Cooling

Cooling indoor space, like heating, requires a lot of energy con-
sumption, especially in climates with high humidity, which requires 
dehumidification equipment to achieve thermal comfort [81]. The 
dehumidification process often requires large amounts of energy, so the 
researchers worked to find suitable solutions to reduce the energy 
needed for the operation while achieving thermal comfort [82]. In 
temperate climates, an air conditioner coupled with a desiccant dehu-
midifier can achieve thermal comfort by removing moisture and 
providing dry air at an acceptable temperature while saving energy 

[83].
As we mentioned earlier, heat pumps in heating also have broad uses 

in building cooling systems. One of its applications is the vapor 
compression air source heat pump (VCASHP) system. Zhang et al. [84] 
reviewed recent developments in this field, and they mentioned three 
categories: single-stage, two-stage, and multi-stage. The two-stage 
compression system can also be classified into quasi-two-stage, two--
stage, and cascade compression systems based on the number of com-
pressors and separate loops.

Recently, variable refrigerant flow (VRF) systems appeared and 
quickly gained popularity due to their ability to reduce energy con-
sumption, respond to load variables, and ease installation and mainte-
nance. They can be installed in both public and residential buildings 
[85]. In a recent review of VRF system components, Hernandez and 
Fumo [86] note that tests determined by various compressor configu-
rations, electronic expansion valve (EEV) placement, and airflow oper-
ations affect performance and thermal comfort, as well as the system’s 
response and sensitivity, depending on the number of internal evapo-
rators connected to the system, as in Fig. 5.

Despite the heat pump’s (HP) strong effectiveness in the cooling 
process, its downside is that it consumes a lot of energy, especially when 
the air temperature is high. Accordingly, the researchers worked hard to 
find ways to raise their efficiency and make them more sustainable [87,
88]. One of the proposed solutions is the incorporation of evaporative 
condensers that improve heat removal through the evaporative cooling 
effect. Harby et al. [89] comprehensively reviewed the latest evapora-
tive condenser technology in residential cooling systems. They found 
that an evaporative-cooled condenser instead of an air-cooled condenser 
could reduce energy consumption by up to 58 %. The COP of systems 
with cooling capabilities ranging from 3 to 3000 kW can be increased by 
roughly 113.4 %.

Another essential problem is frost formation on the evaporator; when 
it accumulates, it weakens the heat exchange capacity and decreases the 
device’s performance. Several techniques remove frost or prevent its 
formation, divided into two types: passive and active [90]. Passive 
methods focus on treating surfaces by changing the shape of the surfaces 
or coating them with an anti-frost material [91–94]. The active methods 
it is done through several techniques, the most important of which are 
ultrasonic vibration methods, hot gas reverse cycle, low-frequency 
oscillation, electrodynamics (EHD), desiccant dehumidifiers, and elec-
tric heater [95–100].

Studies have dealt with other methods of cooling buildings to reduce 
dependence on electricity and have less environmental impact. Also, if 
there is a shortage of electricity supplies, these methods can be a 

Table 1 
Shows some of the techniques used to improve the thermal insulation of 
windows.

Reference Authors Technique Major findings

[64] Mujeebu 
and Ashraf

double-glazed windows Saving energy demand for 
cooling by 18 %–28 %

[65] Wang et al. Determine the optimum 
distance between argon- 
filled Transparent 
Insulation Slats.

Improve the thermal 
resistance of windows by 
39.47%–74.07 %

[66] Cuce and 
Riffat

Use of heat insulating 
solar glass (HISG)

The shading coefficient of 
HISG glass is only 0.136, 
resulting in 
approximately 80 % 
reduction in solar heat 
gain compared to regular 
glass. 
100 % UV and 99 % IR 
blocking.

[67] Cuce Determination of U-value 
by numerical and 
experimental analysis of 
argon-filled double- 
glazed windows.

U-value is 0.89 W/m2K 
from computational fluid 
dynamics (CFD) analysis. 
U-value is (1.23, 1.18 and 
1.31 W/m2K) for the top, 
center, and bottom 
positions of the window 
sample from 
environmental chamber 
tests. 
Thermal bridging and 
edge effects play a major 
role in the actual U-value 
performance of glass 
products.

[68] Hashemi 
et al.

Investigation of the effect 
of Vacuum Insulation 
Panel (VIP) with thermal 
conductivity of 
0.005–0.008 W/mK.

Significant reduction in 
heat loss. 
Thermal bridge is the 
important factor affecting 
the thermal insulation 
value.

[69] Bao et al. WPU/DHTS composite 
film-coated glass 
(waterborne 
polyurethane, double- 
shell hollow TiO2@SiO2 
spheres).

The temperature rise rate 
is 26 % lower than 
uncoated glass.

[70] Cuce and 
Riffat

Experimental and 
numerical investigation 
of thermal performance 
efficiency of vacuum tube 
window technology

The optimal vacuum tube 
diameter is 60 mm. 
The U-value is 0.40 W/m2 
K, five times better than 
argon-filled double- 
glazed windows.

[71] Magzoub 
et al.

Investigation of the 
performance of Energy 
Active Window (EAW) 
with HVAC air reuse 
technology.

Lowering the temperature 
of the inner window 
surface by 4–7 ◦C.

Fig. 5. Schematic of a variable refrigerant flow system [86].
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successful alternative in cooling buildings [101]. Geothermal cooling 
systems can be a successful solution in hot climates where the ground 
temperature is sufficient to provide indoor comfort [102] (Fig. 6). These 
systems use water or air as a heat transfer medium [103]. Gautier et al. 
[104] claimed that by relying on a water-based geothermal cooling 
system, interior thermal conditions could be kept within acceptable 
limits for most building areas, using 50 % of the electrical power 
compared to the standard chiller process with a maximum power 
reduction of 60 %.

4.3. Ventilation and Heat recovery

Through the literature review, two ventilation methods in buildings 
can be identified: natural (passive) and mechanical (using dedicated 
equipment) [106,107]. Natural ventilation driven by temperature dif-
ferences and the principle of convection buoyancy can provide good air 
quality and acceptable indoor thermal comfort without consuming en-
ergy [108]. Natural ventilation can contribute to the cooling process by 
removing excess heat inside the building [109]. There is no specific form 
of natural ventilation as it is implemented differently. Al-Obaidi et al. 
[110] suggested a strategy of attic ventilation in tropical climates to 
eliminate the accumulation of heat inside the building and possibly to 
couple it with a turbine fan in the exit hole that helps in a steady airflow. 
Duan et al. [111] presented another form of ventilation using the solar 
chimney installed at the top of the building. The solar radiation heats the 
air mass inside the chimney, thus generating an air current that moves 
from inside to outside. A mechanical fan can also be used in the entrance 
hole to maintain a constant flow rate at night and during climatic con-
ditions in which solar radiation is weak, as in Fig. 7.

Windcatchers are one of the oldest technologies used in natural 
ventilation in buildings, and they are still being used with some im-
provements that can advance high performance in providing a suitable 
indoor environment and reducing CO2 levels. Jomehzadeh et al. [112] 
comprehensively reviewed the most important forms of windcatchers. 
They focused on indoor air quality (IAQ) and comfort, claiming that IAQ 
levels were generally satisfactory using windcatchers.

Mixed ventilation is a different technique that combines mechanical 
and natural ventilation. Salcido et al. [113] review the most prominent 
mixed-mode ventilation (MMV) technologies that maintain IAQ for oc-
cupants by providing suitable interior environmental conditions, noting 
that mixed-mode buildings can save 40 % of HVAC energy and 75 % 
alternate between natural and mechanical ventilation. It should be 
noted that this type of ventilation has a high flexibility in responding to 
the requirements of the building.

Building ventilation is accompanied by the loss of part of the internal 
heat, which requires more energy to compensate for this lack of heat. 
With efforts to reduce energy consumption, studies have sought to find 
effective ways to recover heat. Heat recovery systems are divided into 

two systems: passive recovery heat systems and active recovery heat 
systems. The working principle of passive heat recovery systems in-
cludes taking advantage of the difference in the temperature or enthalpy 
between the fresh air entering the building and the exhaust air leaving 
the building through a heat exchanger to reduce the heat load of the 
outside air [114]. Passive heat recovery systems are classified into five 
categories based on design and function: flat plate, rotatory wheel, 
run-around, heat pipe, and membrane energy exchanger (MEE) [115,
116]. Active heat recovery systems can efficiently regulate the temper-
ature and humidity of the fresh air while recovering the latent heat from 
the exhaust air. These systems are characterized by their high efficiency 
and flexibility of control. Active heat recovery systems include heat 
pump air-to-air energy recovery systems and thermoelectric ventilators 
[117].

5. Energy production with renewable energy sources

ZEBs obtain their energy from renewable sources, which contributes 
to reducing greenhouse gas emissions, diversifying energy sources, and 
achieving better energy security. The energy produced on-site, or dis-
trict energy, is used for heating and cooling spaces, hot water, and 
buildings’ electricity. Each renewable energy source can be used inde-
pendently, or two or more sources can be combined into hybrid systems 
with high performance, diverse outputs, and flexibility in supply in ex-
change for variable demand (Fig. 8) [118,119].

Choosing the appropriate renewable energy technology is based on 
the location and climatic conditions (solar radiation intensity, speed, 
and direction of the prevailing winds), economic factors (the cost of 
renewable energy installations, energy fees, the economic level of in-
dividuals, and government policies supporting this trend), and technical 
aspects (the availability of the possibility of installing and maintaining 
renewable energy facilities) [120].

Energy storage, whether electricity or heat, enhances the possibility 
of applying renewable energy technologies in ZEBs and provides 
excellent reliability in responding to energy demand [121]. Today, en-
ergy storage technologies are still in their early stages, and their effi-
ciency has not reached a high level, but research continues to develop 
this field. The most important forms of energy storage, batteries, 
hydrogen cells, flywheels, compressed air, pumped hydro, heat storage, 
and other technologies, are still in the field of research and development 
[122–124].Fig. 6. The geothermal earth–air heat exchanger (GEAHE) concept [105].

Fig. 7. Ventilation of buildings using solar chimney technology and fan [111].
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Decarbonization and the inclusion of renewable energy can benefit 
from the flexible connections of the electricity and heating sectors 
[125]. There are many ways to achieve this flexibility, including flexible 
thermal generators, different types of energy storage, demand-side in-
terventions, grid-connected electric vehicles, geographic balancing 
through transmission, and adjustments to the layout, siting, and distri-
bution of variable renewable energy. The flexible use of electricity for 
heating, frequently in conjunction with heat storage, has recently drawn 
more attention as another upcoming source of system flexibility, even 
though producing heat from electricity has not traditionally been a 
preferred option in fossil fuel-based energy systems [126].

5.1. Solar energy

Solar energy is one of the most widely used types of renewable en-
ergies, and photovoltaic cells are often the most common solar tech-
nology in producing energy for buildings. Various factors affect the 
performance of PV panels. Fouad et al. [127] summarized the main 
essential factors, which include the environmental, installation, PV 
system, and cost factors in addition to various other factors, and each of 
these main factors branched out into other secondary factors.

It can be installed on the roofs and walls of buildings with what is 
known as building-applied PV (BAPV) or building-integrated PV (BIPV) 
to be part of the building envelope instead of traditional building ma-
terials [128]. Or to be installed independently of the building if suffi-
cient space is available [129–131]. BIPV has a promising future and 
recently began to receive broad interest. There is a lot of research to 
improve its performance and achieve multiple goals. In addition to the 
electricity generated by this PV, they give an attractive appearance to 
the building and insulate it by creating an air current between the PV 
and the walls and ceiling of the building (Fig. 9). However, one of the 
disadvantages of this technology is the high temperature of the solar 
panels, especially during the summer in hot climates, and thus the low 
generation efficiency [132].

One proposed solution to eliminating heat is using hybrid systems 
that combine photovoltaic and thermal systems (PV/T). Baljit et al. 
[134] compare BIPV systems and building integrated 
photovoltaic-thermal (BIPV/T) systems; BIPV refers to designs with or 
without ventilated fluid (air or water), which can cool PV panels, in-
crease electrical output, then dissipate the heat to the environment. For 
BIPV/T, ventilation fluid is used as a working fluid to collect heat from 

PV panels for heating or drying purposes.
Multiple designs for PV/T systems differ in the method of installing 

PV cells with the thermal collector; the fluid used also has a role in 
determining the shape of the design. Aste et al. [135] presented a 
comprehensive review of flat plate PV–thermal collectors that use water 
as a heat transfer medium. They were classified into four types according 
to the cover components and the insulation material. They have 
observed that in the uncovered systems, the PV systems work with high 
efficiency equal to or more than the PV systems that operate alone due to 
the cooling of the cells resulting from the heat-transferring liquid; 
however, the heat generated from the thermal system is low. As for the 
covered systems, it is the opposite of the uncovered systems, where the 
generated electricity is low because of the high temperature of the 
photovoltaic cells, which reduces efficiency. Despite the negatives, the 
energy demand of the building determines which systems are best. For 
example, there is a high demand for heat in regions with cold climates, 
so covered PV/T systems are appropriate. In regions with hot temper-
atures, electricity is demanded to operate the cooling equipment; 
simultaneously, the building does not need a lot of heat, so the uncov-
ered PV/T systems are appropriate. It can also determine the nature of 
energy demand according to the variation between summer and winter 
[136,137].

Solar energy can be used to cool spaces in buildings, and considering 
the modernization of solar energy installations, high-performance solar- 
powered cooling technologies have become available. Such as solar 
photovoltaic and thermal cooling (adsorption and absorption) [138]. 

Fig. 8. Orientation towards the use of hybrid renewable energy [118].

Fig. 9. A staggered installation on the walls and roof of the building for BIPV 
[132,133].
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Traditional refrigeration devices with an electric compressor consume 
large amounts of energy, so solar energy systems that operate by ab-
sorption and adsorption can replace them [139,140]. Eicker et al. [141] 
studied and analyzed absorption cooling systems covering most climatic 
regions worldwide. They concluded these systems could cover 80 % of 
the solar cooling fraction except for humid climates. They indicated 
absorption cooling systems are more economically feasible in hot 
climate regions than in temperate climates.

Another hybrid solar technology suitable for building applications is 
integrating PV and thermoelectric (TE) systems. The working principle 
of TE systems includes converting temperature differences into electric 
potential, in what is known as the (Seebeck effect). Irshad et al. [142] 
reviewed PV systems integrated with TE systems. They noted that these 
systems increase the potential for energy savings by 22 % and contribute 
to reducing the internal temperature of the building from 5 to 10 ◦C 
under the surrounding climatic conditions. Qasim et al. [143] studied a 
hybrid PV-TEG system by connecting a PV panel with 32 TEG modules. 
The waste heat from the PV panel can be absorbed by the TEG and 
converted into electricity. The results showed an improvement in the 
hybrid PV-TEG system, as the voltage increased by 9.21 %, and the ef-
ficiency increased by 18.16 % compared to the photovoltaic panel alone. 
Also, at a temperature of 40 ◦C, the efficiency of the hybrid PV-TEG 
system improved by 27 % compared to the photovoltaic panel.

TE systems can also generate electricity by using solar heat to heat 
one side and cool the other. Qasim et al. [144] experimentally investi-
gated a thermoelectric generator (TEG) system. They measured the 
maximum generated voltage by direct exposure to solar radiation on one 
side and cooling with tap water on the other. The system is made up of 
multiple thermoelectric units that are linked in parallel. The results 
showed that the maximum open circuit voltage was 11.75 V.

5.2. Wind energy

The wind is one of the renewable energy sources that man has har-
nessed since ancient times. Given the energy crisis and environmental 
concerns, the wind energy sector has witnessed significant growth in 
recent decades. Countries worldwide aim to reach 1000 GW by 2030 
[145]. Wind turbines are one of the technologies used to produce en-
ergy. Wind turbines can be an independent energy source or integrated 
with other sources in ZEBs. For example, wind turbines can compensate 
for the low generation of solar energy installations at night or in weather 
conditions with weak solar radiation. Also, in the absence of sufficient 
spaces with high energy demand, as in most large cities with a high 
population density, wind turbines are considered a successful solution, 
as they do not need large areas such as solar panels [136]. In regions 
with appropriate wind speeds and high frequency, wind turbines can be 
relied upon as a significant source of electricity generation, considering 
the economic feasibility, as the initial costs of wind turbines differ from 
solar panels [146]. Iqbal [147] conducted simulations to choose the 
optimal system for energy production for a house located in an area with 
an annual wind speed average of 6.7 m/s. The performance of each 
method was measured accurately, and the results indicate that wind 
energy is of higher feasibility in energy generation.

Wind turbines are divided into two types: horizontal-axis wind tur-
bine (HAWT) and vertical-axis wind turbine (VAWT) [148,149]. Based 
on the rotor diameter and generation capacity, HAWT can be divided 
into six categories (micro, mini, small household, small commercial, 
medium commercial, and large commercial).

VAWTs are characterized by high transportation and installation 
flexibility, making them more suitable in urban areas and ZEB applica-
tions. They are highly efficient and produce higher energy in turbulent 
and variable-direction wind environments. However, VAWTs are less 
efficient than HAWTs in stable winds and have a low ability to self-start 
and continue to generate positive torque. Hence, the studies worked on 
adding improvements to the design of the VAWTs to raise their effi-
ciency, such as increasing wind inlet speed and reducing negative torque 

[147].
Recently, a new approach has begun in the architectural design of 

buildings that aims to integrate with the use of renewable energy 
sources, including wind energy [150]. VAWTs have proven their ability 
to adapt to wind turbulence caused by buildings in urban areas. Lee et al. 
[151] investigated VAWTs in environments with wind turbulence 
greater than 30 %, and the results indicate the flexibility of VAWTs in 
rapid response to changing operating conditions.

5.3. Geothermal energy

Geothermal heat is a vital renewable energy resource. It has high 
operating reliability and stable performance that is not affected by day 
and night or seasons. Geothermal heat can produce high heat at great 
depths from the earth’s surface and is usually used in power plants. It 
can also be used at shallow depths from the earth’s surface at medium 
temperatures. Nevertheless, it is suitable for use in buildings and is 
usually cheaper. Geothermal heat provides building heating, ventila-
tion, and cooling energy [152].

There are many applications for exploiting geothermal heat. The 
ground source heat pump (GSHP) is a common application [153]. The 
principle of operation of the GSHP is based on heat exchange with the 
ground through heat exchangers. Heat exchangers operate in two sys-
tems: the open-loop system and the closed-loop system [154]. The open 
loop system transfers heat by exchanging water with surface water or 
groundwater boreholes (Fig. 10) [155]. Open loop systems are charac-
terized by their high ability to heat exchange and their effective 
contribution to heating and cooling when suitable conditions are 
available for their application. However, they are more affected by cli-
matic changes and require special equipment for their implementation 
as they deal with water of different chemical compositions. In addition, 
several controls related to preserving ground and surface water from 
pollution and changing its physical and chemical properties must be 
considered when implementing these systems [156,157].

As for the closed-loop system, there is no direct contact with the soil 
or groundwater. The heat exchange occurs through a liquid moving in a 
closed loop of pipes. The closed-loop system can be applied in any 
location where it does not require the availability of specific materials, 
such as an open-loop system; however, the initial installation costs are 
relatively high [158,159]. Closed-loop heat exchangers are installed in 
two different ways: horizontal systems and vertical systems [153]. 
Horizontal systems are applied at a small depth from the earth’s surface, 
ranging between 1 and 2 m, but they require ample space compared to 
vertical systems [160]. The pipe network is installed in parallel or the 
form of a series, and the required area can be reduced by installing the 
pipes in a spiral or inside a trench [161]. Vertical systems are charac-
terized by stable performance and are not impacted by weather condi-
tions, as they are implemented at great depths. Still, it requires more 
energy to move the liquid inside the pipe [162]. Vertical systems are 
installed by laying pipes in a borehole and are connected in parallel or 

Fig. 10. The open-loop system ground heat exchanger [155].
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series. The system may need more than one borehole, so a sufficient 
distance separating the boreholes must be maintained [163,164].

Another technology that uses geothermal heat as an energy source 
and contributes to providing HVAC energy and internal thermal comfort 
for buildings. This technology is known as the earth air tunnel heat 
exchanger (EATHE) system, which has recently begun to gain interest. 
Singh et al. [165] conducted a comprehensive review of the recent de-
velopments in the EATHE system. They concluded that this system could 
be independently or hybrid with traditional HVAC techniques or inte-
grated with other renewable energy systems to reduce greenhouse gas 
emissions and contribute to reducing the impact of energy crises.

To achieve the most significant benefit from geothermal energy, 
studies have presented several hybrid systems that integrate geothermal 
technologies with other renewable energy technologies, such as solar 
chimneys, cooling towers, solar thermal collectors, nocturnal radiative 
cooling, and others [166]. Nouri et al. [167] reviewed the GSHP systems 
supported by solar energy. The results showed a high system efficiency 
and a COP of 13.5 for the system and the heat pump 5.7, and it also led to 
higher economic returns with a payback period of 5 years due to lower 
operating costs.

6. Discussion

A comprehensive review of energy efficiency measures in ZEBs 
identifies a range of strategies and technologies to reduce energy con-
sumption and enhance efficiency. By organizing these measures into 
those focused on minimizing energy use and those targeting more effi-
cient energy demand management, the review underscores the critical 
role of building design, particularly through improvements to the 
building envelope and solar shading. Nevertheless, the significant 
impact of occupant behavior is often underestimated, suggesting a need 
for more empirical data to demonstrate how behavioral changes can be 
effectively implemented and sustained across various contexts. The re-
view also explores innovative insulation materials, such as insulating 
plaster and bamboo fiber, highlighting the importance of comparing 
these materials’ costs and benefits across different climatic conditions 
while considering challenges like installation complexity and material 
durability. Solar chimneys are presented as promising solutions for 
achieving natural ventilation and reducing reliance on mechanical sys-
tems, though their application in existing buildings requires further 
investigation, particularly in terms of costs, maintenance, and the 
feasibility of retrofitting older structures. Similarly, integrating vegeta-
tion on roofs and external walls as thermal insulation offers significant 
potential, yet long-term effects on building integrity, maintenance costs, 
and water resource requirements in arid regions need further explora-
tion. Additionally, advanced glazing technologies are recognized for 
their ability to reduce heat loss and improve energy efficiency. Still, 
future studies should address the economic aspects of these technolo-
gies, such as installation and maintenance costs, and their impact on 
natural lighting and indoor comfort across various climates.

Current studies provide a detailed overview of HVAC systems, 
emphasizing energy efficiency as a key factor in achieving ZEBs by 
thoroughly discussing heating technologies like district heating, air 
source heat pumps (ASHP), and ground source heat pumps (GSHP), and 
highlighting their advantages, such as efficiency and compatibility with 
renewable energy sources, with the analysis being supported by data 
and studies that add credibility. However, although the studies cover 
technological developments well, it would have been better if they had 
delved deeper into the economic, environmental and practical chal-
lenges of implementing these systems; for instance, the high initial costs 
of GSHP and the reliance on specific climatic conditions for optimal 
performance could hinder widespread adoption, and integrating these 
systems into older buildings or in regions with limited technical exper-
tise presents further challenges that warrant discussion. In the cooling 
section, studies effectively explore technologies such as variable refrig-
erant flow (VRF) systems and geothermal cooling, emphasizing their 

energy-saving potential, but could expand towards the long-term sus-
tainability of these systems, especially as climate change affects tem-
perature extremes, and address the complexity of installation and 
maintenance, particularly in retrofitting existing structures. Similarly, in 
ventilation and heat recovery systems, studies present the most impor-
tant techniques, distinguishing between passive and active methods 
while highlighting their energy-saving potential, but could address the 
practical challenges of integrating these systems into existing buildings 
and the maintenance costs associated with them, which may impact 
their long-term viability.

Researchers provide an insightful overview of how ZEBs can leverage 
renewable energy sources for energy independence and sustainability. 
Integrating renewable energy is crucial for reducing greenhouse gas 
emissions and enhancing energy security. The distinction between 
building-applied PV (BAPV) and building-integrated PV (BIPV) is well- 
articulated, showing an understanding of the architectural implica-
tions of solar energy integration. However, the research could be 
enhanced by a more detailed analysis of the economic and aesthetic 
trade-offs between building-applied PV and building-integrated PV. 
While BIPV offers aesthetic and insulation benefits, it also comes with 
higher costs and potentially lower efficiency due to increased temper-
atures, especially in hot climates. This balance between cost, efficiency, 
and aesthetic appeal could be critically evaluated to provide a more 
nuanced view of the adoption potential of BIPV in different contexts. 
The discussion of hybrid systems, such as photovoltaic-thermal systems, 
offers an innovative solution to the problem of efficiency loss due to high 
temperatures in photovoltaic panels. However, a deeper exploration of 
the practical challenges faced by these hybrid systems, such as the 
complexity of installation and maintenance and the economic viability 
of these systems compared to conventional PV systems, could be bene-
ficial. Additionally, while studies discuss the potential of solar energy for 
cooling, they do not adequately address the technical and economic 
barriers to the widespread adoption of solar cooling technologies, 
especially in regions with varying climatic conditions. The same is true 
of wind energy. Studies have provided a strong overview of the potential 
of wind turbines in ZEBs, especially the flexibility of VAWTs in urban 
environments. However, the argument can be more critical of the limi-
tations of VAWTs, such as their lower efficiency compared to HAWTs. 
Additionally, while studies acknowledge the economic viability of wind 
energy in certain areas, they can provide a more detailed analysis of the 
cost-benefit ratio of wind energy in urban environments, where space is 
limited and the economic viability of wind energy is often disputed. The 
environmental and aesthetic impacts of integrating wind turbines into 
urban landscapes can also be highlighted, which are often important 
factors in adopting renewable energy technologies. Studies have shown 
the advantages of geothermal energy in providing reliable and stable 
energy for HVAC in buildings. While studies indicate higher initial costs 
for closed systems, they do not adequately address the long-term eco-
nomic impacts, including maintenance costs and the potential for per-
formance degradation over time. Furthermore, a more detailed 
examination of the environmental effects of geothermal systems, 
particularly groundwater contamination and land use, could be pro-
vided. While studies note the need to consider these factors, a more 
critical assessment of the trade-offs between the environmental benefits 
and potential risks of geothermal energy would provide a more balanced 
view of its role in ZEBs.

7. Conclusions and areas for future study

7.1. Conclusions

This paper reviewed the most important literature on Zero Energy 
Buildings (ZEBs) over the past ten years, focusing on HVAC energy in 
buildings, which constitutes the most significant part of the energy de-
mand. Three main axes must be addressed to achieve ZEBs: energy ef-
ficiency measures, passive and active HVAC systems, and renewable 
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energy production technologies. Limited energy production resources, 
economic burdens, and global climate change due to greenhouse gas 
emissions necessitate conserving energy in buildings and finding solu-
tions to reduce energy waste. Various passive and active techniques for 
building envelopes, such as insulation materials, phase change mate-
rials, and vegetation cover, were examined. However, few studies have 
considered factors like cultural, social, and economic influences and 
climatic conditions. It’s crucial to consider the community’s architec-
tural and cultural identity, verify the costs of building materials, and 
address the specific needs of existing traditional buildings. HVAC 
methods, especially heat pumps (ASHP, WSHP, GSHP), were extensively 
studied, but relying solely on them can be energy-intensive, particularly 
in extreme climates. Thus, integrating multiple HVAC sources is rec-
ommended to reduce energy consumption and provide thermal comfort, 
which many studies have overlooked. Renewable energy sources, such 
as solar, wind, and geothermal, aim to reduce greenhouse gas emissions 
and diversify energy supplies. Technologies like photovoltaic panels, 
solar heat collectors, small wind turbines, and ground heat exchangers 
were discussed. Solar energy is the primary system for energy genera-
tion, while wind and geothermal technologies need further develop-
ment. Factors like climatic conditions, initial costs, and space 
availability are critical for selecting appropriate energy systems. The 
studies did not clearly address the financial aspect, particularly the high 
initial costs and whether ZEBs should be a governmental or individual 
approach. Solutions for integrating systems into small spaces and 
improving efficiency are needed, especially in high-density cities.

7.2. Areas for future study

As for the prospects for future studies, the authors suggest:
Multidisciplinary Approaches: Investigate the intersection of cul-

tural, social, and economic factors with energy-efficient building tech-
nologies to create more inclusive and adaptable ZEB solutions.

Retrofitting Traditional Buildings: Develop strategies and technolo-
gies specifically designed for retrofitting existing traditional buildings, 
considering their unique architectural and structural characteristics.

Integrated HVAC Solutions: Explore integrated HVAC systems that 
combine various technologies (e.g., heat pumps, natural ventilation, 
advanced insulation) to improve overall energy efficiency and occupant 
comfort.

Renewable Energy in Urban Settings: Study innovative solutions for 
installing renewable energy systems in limited spaces, such as high-rise 
buildings and densely populated urban areas.

Economic Viability and Policy Frameworks: Conduct detailed ana-
lyses of the financial implications of ZEBs, including cost-benefit ana-
lyses, funding mechanisms, and the role of government incentives versus 
private investment.

Climate-Specific ZEB Technologies: Research how ZEB technologies 
can be tailored to different climatic conditions to ensure their effec-
tiveness and feasibility across diverse environmental settings.

Long-Term Performance and Maintenance: Examine the long-term 
performance, durability, and maintenance requirements of ZEB tech-
nologies to ensure their sustainability and reliability over time.
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[21] L.F. Cabeza, M. Chàfer, É. Mata, Comparative analysis of web of science and 
scopus on the energy efficiency and climate impact of buildings, Energies 13 (2) 
(2020), https://doi.org/10.3390/en13020409.

[22] D. Gough, S. Oliver, J. Thomas, An Introduction to Systematic Reviews, Sage, 
2017.

[23] H. Omrany, R. Chang, V. Soebarto, Y. Zhang, A. Ghaffarianhoseini, J. Zuo, 
A bibliometric review of net zero energy building research 1995–2022, Energy 
Build. 262 (May 01) (2022), https://doi.org/10.1016/j.enbuild.2022.111996. 
Elsevier Ltd.

[24] M. Rabani, H. Bayera Madessa, N. Nord, Achieving zero-energy building 
performance with thermal and visual comfort enhancement through optimization 
of fenestration, envelope, shading device, and energy supply system, Sustain. 
Energy Technol. Assessments 44 (Apr) (2021), https://doi.org/10.1016/j. 
seta.2021.101020.

[25] S. Safarova, E. Halawa, A. Campbell, L. Law, J. van Hoof, Pathways for optimal 
provision of thermal comfort and sustainability of residential housing in hot and 
humid tropics of Australia – a critical review, Indoor Built Environ. 27 (8) (Oct. 
01, 2018) 1022–1040, https://doi.org/10.1177/1420326X17701805. SAGE 
Publications Ltd.

[26] A.G. Prafitasiwi, M.A. Rohman, C.S. Ongkowijoyo, The occupant’s awareness to 
achieve energy efficiency in campus building, Results in Engineering 14 (Jun) 
(2022), https://doi.org/10.1016/j.rineng.2022.100397.

[27] J. Ouyang, K. Hokao, Energy-saving potential by improving occupants’ behavior 
in urban residential sector in Hangzhou City, China, Energy Build. 41 (7) (Jul. 
2009) 711–720, https://doi.org/10.1016/j.enbuild.2009.02.003.

[28] N. Abdou, Y. el Mghouchi, S. Hamdaoui, N. el Asri, M. Mouqallid, Multi-objective 
optimization of passive energy efficiency measures for net-zero energy building in 
Morocco, Build. Environ. 204 (Oct. 2021), https://doi.org/10.1016/j. 
buildenv.2021.108141.

[29] G. Kumar, G. Raheja, Design determinants of building envelope for sustainable 
built environment: a review, International Journal of Built Environment and 
Sustainability 3 (2) (May 2016), https://doi.org/10.11113/ijbes.v3.n2.127.
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