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Over the last decades, significant drawbacks of organic solvents such as high toxicity have motivated the
scientists to find more eco-friendly solvents. Supercritical fluids (SCFs), especially SCCO,, are known as a
promising class of solvent, which have shown their indisputable potential of application in industrial-
based pharmaceutical activities due to possessing various advantages such as high abundancy, low cost,
and insignificant toxicity. Machine Learning (ML) is considered as a numerical approach to estimate drug
solubility in pharmaceutical industry. The purpose of this manuscript is to estimate the solubility of sal-
icylsalicylic acid in SCCO, and compare it with experimental data using machine learning (ML) approach.
A regression problem with 32 input vectors is the subject of this study, which is being conducted. This
dataset contains two input features (P and T) and one output feature. We utilized Decision Tree (DT),
K-nearest neighbor (KNN), and Multilayer perceptron (MLP) regression models as the first time for sali-
cylsalicylic acid, which had error rates of 1.10E-01, 1.07E-01, and 7.13E-01, respectively, when using the
MAPE measure. In addition, the R-squared scores for the DT, KNN, and MLP models are 0.974, 0.996, and
0.809, respectively. The third statistic is MAE, in which the error rates of models are 5.27E-05 for DT,
5.53E-05 for KNN, and 2.61E-04 for MLP. The error rates of DT, KNN, and MLP are all 5.27E-05. Finally,
KNN was the most general model, with optimal values of P = 400, T = 338.0, and Y = 0.00388 being
obtained.
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1. Introduction need promising approaches and thus, novel pharmacological devel-

opment processes [3].

Development of innovative experimental and analytical tech-
niques for facilitating the production of novel and effective drugs
is an important need in recent pharmaceutical industry [1,2]. Due
to the existence of disparate technological/operational challenges
towards appropriate incorporation of safe manufacturing processes
with mainstream therapeutic application, scientific areas of drug

* Corresponding authors.
E-mail addresses: zhangpj2006@126.com (P. Zhang), asbiel@qu.edu.sa (A.M.
Alsubaiyel).

https://doi.org/10.1016/j.molliq.2022.121195
0167-7322/© 2022 Elsevier B.V. All rights reserved.

In current decades, true selection of solvent plays an important
role in the pharmaceutical industry. Despite noteworthy advan-
tages of organic solvents in chemical/pharmaceutical industry such
as good performance and ease of use, the emergence of various
drawbacks including high vapor pressures and flammability, great
toxicity, and atmospheric pollution has confined their application
[4,5]. To overcome the limitations of organic solvents, the use of
supercritical fluids (SCFs), which possess the properties of both gas-
eous and liquid states, have been of great interest.
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SCFs have shown the performance of their usage in disparate
scientific fields like extraction, targeted drug delivery, chromatog-
raphy, purification, and separation [6-8]. Among different types
of SCFs, supercritical carbon dioxide (SCCO,) has been widely
applied in industrial-based pharmaceutical activities owing to hav-
ing disparate advantages such as high abundancy, low cost, good
biodegradability, and insignificant toxicity [9].

Application of artificial intelligence (Al) technique to numeri-
cally anticipate the drug solubility results obtained by experimen-
tal investigations has been interesting among researchers. Al
approach is currently used to solve minor but important challenges
in drug development industries due to its brilliant capability to
generate meaningful insights [1]. Machine learning (ML) tools are
progressively replacing analytical modeling in scientific domains.
These techniques are used to solve a variety of issues, including
decision trees, artificial neural networks, and other linear and
non-linear models [10-12].

We have a dataset with two input features and one output in
this study. In this work, three models are chosen: Multiple Layers
Perceptron, Decision Tree, and K-nearest Neighbors.

The name “MLP” refers to a neural network with many layers of
perceptron. MLPs are forward-feeding artificial neural networks.
MLP includes minimum of three layers from inputs, outputs, and
hidden layers. The nodes are not activated in in the first layer;
rather, the nodes in this layers represent the data point. If the data
point is reflected by a vector of length d, then the input layer will
include d nodes [13,14].

Estimation problems benefit from the simplicity of the k-
Nearest Neighbor (KNN). Furthermore, because it is a wasteful algo-
rithm that does not generalize from the training subset, all the
training subset is retained during the testing stage. It is through
comparison with the training data that the KNN regressor learns
[15-17].

Classification and regression problems can be solved with the
help of a decision tree, which has roots in machine learning. A ben-
efit of decision tree compared to another classification systems is
that it employs an ordered or hierarchical decision-making struc-
ture instead of simply grouping characteristics (or bands) together.
The decision tree is a hierarchical and interpretable model for deal-
ing with various machine learning problems. We begin at the deci-
sion tree’s root and work our way down the tree based on the value
of each feature in each node’s subtree. We repeat this process until
we reach the last node or leaf [18-20].

2. Data set

In the dataset used for this work (Table 1) [21], pressure and
temperature are inputs and a single output is shown through 32
values.

3. Methodology
3.1. Decision tree regression

The growing popularity of DT can be attributed to several fac-
tors, including their ease of use and interpretation, their low time
complexity, and their ability to be represented graphically. A DT
is a collection of constraints that are applied in a logical order, start-
ing at the root and working their way up the tree to the leaf or
branch at the end [22,23]. Hierarchical tree structures are more
transparent than neural networks (ANNs), making them more
straightforward to understand and comprehend. The assessment
aspects to maximize inter-node heterogeneity when constructing
the DT from a dataset [11].
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Table 1
The whole data set. Re-used from [21] with permission from Elsevier.

No x1=P x2=T y

1 120 308 1.07 x 1074
2 318 7.07 x 10°°
3 328 6.12 x 10>
4 338 3.77 x 10~
5 160 308 1.98 x 10°*
6 318 217 x 1074
7 328 1.87 x 1074
8 338 1.66 x 10°*
9 200 308 247 x 1074
10 318 3.59 x 1074
11 328 5.14 x 1074
12 338 593 x 104
13 240 308 295 x 1074
14 318 4.83 x 1074
15 328 6.85 x 1074
16 338 1.02 x 1073
17 280 308 3.88 x 104
18 318 6.74 x 1074
19 328 1.05 x 1073
20 338 1.60 x 1073
21 320 308 471 x 1074
22 318 8.59 x 1074
23 328 139 x 1073
24 338 211 x 1073
25 360 308 5.35 x 1074
26 318 9.58 x 1074
27 328 1.69 x 1073
28 338 252 x 1073
29 400 308 577 x 1074
30 318 1.28 x 1073
31 328 225 x 1073
32 338 3.88 x 1073

Classification and regression trees are two distinct approaches
to data mining (RT). For the intended purpose, the theoretical foun-
dation of RT is presented here in a brief overview. Multiple regres-
sions and recursive partitioning of the dataset are used to generate
the DT. Each rule of the tree’s internal node repeats the data split-
ting process until a previously specified stop condition is met,
beginning from the root node. It is attached to each of the leaves
or terminal nodes a simple regression model that is only applicable
to that node. Using pruning to reduce the tree’s structural complex-
ity will help it generalize better once the induction process is com-
plete. Pruning criteria can be based on the number of cases in a
node.

Before the DT can be activated, it’s necessary to select the best
possible measurement vectors. The process begins with a binary
split of the dependent feature or the root node, with the sub nodes
being “purer” than the root node. The DTs go through all the possi-
ble splits to find the one that maximizes the resulting tree’s 'purity,’
and this is how they do it (s*) [18,20,24].

Ais, t) = i(t) — pyi(ts) — pri(tr)

It’s s that divides the node into left and right child nodes, and
each of these has a proportion of p; and py in it, as shown in the
equation. Prior to splitting, i(t) which is impurity measurement;
after splitting, i(t;) and i(tg) are criterion of impurity; then finally,
Ai(s,t) calculates impurity reduction caused by split s.

Impurity can be measured in a variety of ways. Gain-ratio, Gini
index, and Chi-square are a few common examples. In this study,
the Gini index (the most common) is used to measure i(t).

m
Io(txx)) =1 - Zf(tx(xi)‘/j)z
=1
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To calculate the percentage of examples with the value x;
belonging to node t, we divide f(tx.x,.j) by the total number of
nodes. Based on Gini impurity index, the DT splitting criterion is
to select the attribute with the lowest (IG).

3.2. K Nearest neighbor regression

For a simple model for classification or regression, try k-Nearest
Neighbor regression. To add insult to injury, it's a poor algorithm
that can’t handle data that it hasn’t seen before because it doesn’t
generalize from the training set. As new examples are identified,
the KNN regressor compares them to the original training data
[16]. Consider T = {(x1,¥,),---, (Xn,Yn)} Tepresent the training data
with distance parameter d, x; = (Xi1,Xi2,- - -, Xim) represent the ith
instance indicated by m input attributes and the corresponding
output y;. Also, N stands for the size of dataset. It is required to com-
pute the d; distance between an unseen data point x and each sam-
ple x; in T and sort the d; distances. If d; is ranked i, then NNi(x) is
the matching instance for di, and y;(x) is the target it is aiming for.
Finally, the prediction y of x is the mean of the results of k nearest
neighbors to x, i.e. y = %Zf:]y,-(x) [17]. To briefly describe the pro-
cesses of the KNN regression algorithm, we can list these steps [17]:

e Inputs: training samples {x;, y;}, X;: input parameters, y;: the out-
put, x: the test data point targeted for estimation
e Algorithm:
o determine distance D(x,x;) to each training data point x;
o choose k nearest data points x; ---X; and their outputs
Vit Yik
o output:

¥ =Fx) =ES5;

3.3. Multilayer perceptron

In 1943, the notion of artificial neural networks was developed
[25]. Later, in 1958, the perceptron was introduced as the first prac-
tical artificial neural network [26]. Since 1986, neural networks
have grown in popularity [27].

Because they are modeled after the nervous system, neural net-
works use neurons as their primary building block. Layers of artifi-
cial neurons (nodes) form neural networks by wires. Networks like
these can identify previously unseen patterns by learning from
both their input patterns and from the mistakes they make along
the way. Based on the connections, neuron model, and weight
adjustment methods, there are a variety of neural networks that
can be built [28]. Artificial neural network (ANN) procedures like
the Multilayer Perceptron (MLP) can be used to model any smooth
calculable functional relationship between parameters and outputs
[29].

Updates and optimizations based on job complexity allow for a
flexible approach to the size of hidden layers. The artificial neurons
in the MLP system are organized in a three-layered network. The
input data is utilized to build an output parameter, which is then
mixed with computations from the hidden layer, as it passes
through a series of input and hidden layers [14,30].

Input weights for neurons are calculated using the following
equation:

Z=XW1 4+ XgWp = XTW

There are a variety of continuously differentiable functions that
can be used to compute the activation function as f{z), including the
more recent ReLU that is frequently used in deep learning. Using
the findings from the perceptron, a classifier can then “guess” the
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right label for the input data by activating the appropriate activa-
tion functions. After gathering the results using back propagation,
the weights are modified for other unseen input vectors [31,32].

3.4. Polypharmacology and repurposing of Salsalate

Salsalate smile code (C1=CC=C(C(=C1)C(=0)0C2=CC=CC=C2(C(=
0)0)0) was generated from pubchem (https://pubchem.ncbi.nlm.
nih.gov/)then inserted into Super-PRED (https://prediction.charite.
de/) the obtained predicted targets are supported in supplementary
data files. Target predictions performed by super-pred are based on
fingerprints similarity with different protein ligands. probability*
and "model accuracy are used as two different scores used in target
prediction process, additionally 10-fold cross-validation process is
applied to assure getting accurate results.

3.5. Molecular docking studies

Computer aided drug design is extensively applied in drug dis-
covery and molecular docking is a beneficial method to provide
us with binding affinity, protein-ligand interactions, and binding
mode information. In the current research work we used CB-Dock
(https://clab.labshare.cn/cb-dock/php/dockingresult.php) to per-
form molecular docking of Salsalate into the putative protein tar-
gets. The pdb files obtained from super-pred results are used in
docking simulations.

4. Results

For the mentioned models, we need to tune their critical hyper-
parameters, which in this research, with the help of grid search
[33], their values have been found with more than 2000 executions.
Some standard regression metrics are then used to evaluate the
final models.

The coefficient of determination, commonly known as the R?
score, can be described as the proportion of change in one variable
that be able to illustrate through another variable. The coefficient of
determination is computed using the following equation.

2 Xu-p
= N2
> (v-v)
When the value of y is determined from the observed value, the

value of j is computed from the forecasted value, y, and the mean of
y is calculated.

MAE is determined using this equation, which averages the dif-
ference between forecasted and actual values. Also, MAPE metric is
defined below:

-l
MAE = =N

o
MAPE = (Ty) % 100

Figs. 1, 2, and 3 compare the real amount and the estimated
amount via three predictive models including DT, KNN and MLP.
In the below graphs, blue points show the predicted amount in
the training phase, the red points illustrate the test phase, and
the green line shows the real amount. Comparing the obtained
results of DT, KNN and MLP predictive models in Table 2 introduces
the KNN model as the most general and precise estimator because
most neighborhood points are close to the green line and the test
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Fig. 1. Estimated vs actual values (DT Model).
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Fig. 2. Estimated vs actual values (KNN Model).
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Fig. 3. Estimated vs actual values (MLP Model).
Table 2
Results.
Models MAE R? MAPE
DT 5.27E-05 0.974 1.10E-01 r
KNN 5.53E-05 0.996 1.07E-01 J”"“”
MLP 2.61E-04 0.809 7.13E-01 60030

points are not too far from the line. Additionally, the R? value of this
model is 0.996, which is significantly higher than other developed
models.

Fig. 4 presents the final 3D result based on the KNN method to
evaluate the effect of P and T on the solubility of salicylsalicylic acid
as the only output. Furthermore, 2D changes of pressure and tem-
perature against the solubility of salicylsalicylic acid are schemati-
cally illustrated in Figs. 5 and 6. For all considered isotherms, there
is a direct connection between the pressure change and salicylsal-
icylic acid solubility. It means that increment of pressure intensifies
the density of SCCO, system and therefore, increases the solubility
amount of salicylsalicylic acid in SCCO,. Although the relationship
between pressure and solubility seems to be direct and clear, the
existence of paradoxical factors has complexified the analysis of
the temperature effect on the solubility. The solvent density and
the sublimation pressure can be taken account as competing
parameters, which significantly change the amount of salicylsali-
cylic acid solubility. Reduction of density (negative effect on solu-
bility) and increment of the sublimation pressure (positive effect
on solubility) are two paradoxical effects, which can be happened
by increasing the temperature. Therefore, the net impact of the
competing parameters can specify the desirable/undesirable role
of temperature on the solubility. By analyzing the figures, it can

Fig. 4. 3D design of inputs/outputs (KNN Model).

be found that at the pressures higher than cross-over pressure
(CP), the effect of sublimation pressure is stronger than the density.
Therefore, increase of temperature results in the increment of sol-
ubility. For the pressures less than the CP, the impact of density
overcomes the effect of sublimation pressure. It means that when
temperature increases at the pressure lower than CP, the density
of the SCCO, system reduces and consequently the solubility of sal-
icylsalicylic acid declines. Considering Table 3, it is understood that
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Fig. 6. Tendency of X2.

the pressure and the temperature of 400 bar and 338 K are the opti-
mized parameters for achieving the greatest amount of salicylsali-
cylic acid solubility.

4.1. Polypharmacology and repurposing of Salsalate

Super-Pred obtained results revealed the ability of Salsalate to
target several proteins based on its fingerprint similarity with their
ligands. Table 4 illustrates the obtained results from Super-pred, we

have selected proteins predicted to be targeted by Salsalate with
probability percent more than 85 and the accuracy of the used
model to be more than 90%. The obtained results with model

Table 3
Parameters optimization for the maximum response.
X1=P X2=T Y
400 338.0 0.00388
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Table 4
Predicted putative protein targets for Salsalate obtained by Super-Pred.

Journal of Molecular Liquids 372 (2023) 121195

Target Name ChEMBL-ID Pdb ID Probability Model accuracy
Transcription intermediary factor 1-alpha CHEMBL3108638 4YBM 90.6% 95.56%
Cathepsin D CHEMBL2581 40D9 89.23% 98.95%
Muscarinic acetylcholine receptor M5 CHEMBL2035 60L9 88.25% 94.62%
Transthyretin CHEMBL3194 6SUG 88.04% 90.71%
Nuclear factor NF-kappa-B p105 subunit CHEMBL3251 1SvC 87.5% 96.09%
DNA-(apurinic or apyrimidinic site) lyase CHEMBL5619 6BOW 87.18% 91.11%
Glucose transporter CHEMBL2535 6THA 85.1% 98.75%
PHE ASN
B:979 .
B:980 as
B:976
VAL VAL ASN
B:932 B:928 B:975
ILE
B:972
H
VAL
B:986
MET
B:943
ASP
PRO TYR 3
B:929 B:935 PHE 3o
H-Bonds ALA B:924
B:923
Donor
Interactions
LJ van der Waals D Pi-Sigma
|_| Conventional Hydrogen Bond l:] Pi-Pi T-shaped
D Carbon Hydrogen Bond [i\ Pi-Alkyl

C[ Pi-Donor Hydrogen Bond

Fig. 7. 3D binding mode and 2D interactions of salsalate into Transcription intermediary factor 1-alpha protein binding site (Pdb ID: 4YBM).

accuracy more than 90% and probability more than 85% showed the
ability of Salsalate to target the following proteins: Transcription
intermediary factor 1-alpha, Cathepsin D, Muscarinic acetylcholine
receptor M5, Transthyretin, Nuclear factor NF-kappa-B p105 sub-
unit, DNA- (apurinic or apyrimidinic site) lyase and Glucose
transporter.

4.2. Molecular docking studies

Further investigation through molecular docking studies was
done using Transcription intermediary factor 1-alpha protein as a
plausible target because the probability of targeting this protein
with Salsalate exceeds 90% and the accuracy of the model exceeds
95% as revealed from super-pred, so we decided to focus on this
crucial target to explore the binding mode, possible interactions,
and affinity with Salsalate. The Pdb file used is 4YBM, the obtained
results showed that salsalate has binding affinity score equal —7.8
Kcal/mol, additionally it has showed an ability to form hydrogen
bonding and hydrophobic interactions also (Fig. 7).

5. Conclusion

Mathematical estimation of salicylsalicylic acid in SCCO, system
and its comparison with obtained experimental data using machine
learning (ML) approach is the main purpose of this manuscript. This
research project is a regression problem with 32 input vectors,

which is currently being investigated. Among the features in this
dataset are two input features (the letters P and T) and one output
feature. When utilizing the MAPE measure, we used Decision Tree
(DT), K-nearest neighbor (KNN), and Multilayer perceptron (MLP)
regression models, which had error rates of 1.10E-01, 1.07E-01,
and 7.13E-01, respectively, when using the Decision Tree (DT)
model. We also used Decision Tree (DT) and K-nearest neighbor
(KNN) regression models to analyze the data. Furthermore, the R-
squared scores for the DT, KNN, and MLP models are 0.974, 0.996,
and 0.809, respectively, for the three models. The final statistic is
MAE, in which the error rates of models are 5.27E-05 for DT,
5.53E-05 for KNN, and 2.61E-04 for MLP. The error rates of models
are 5.27E-05 for DT, 5.53E-05 for KNN, and 2.61E-04 for MLP.
5.27E-05 is the error rate of the DT, KNN, and MLP algorithms.
Finally, the KNN model was the most general, with optimal values
of P =400, T = 338.0, and Y = 0.00388 being achieved for the
parameters.
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