Item
Publication
Terpinen-4-ol–B12N12 and Linalool–B12N12 Compounds as a Natural Replacement of Nitrites and Nitrates in Meat Products: a DFT, QTAIM, and Molecular Docking Study
- Title
- Terpinen-4-ol–B12N12 and Linalool–B12N12 Compounds as a Natural Replacement of Nitrites and Nitrates in Meat Products: a DFT, QTAIM, and Molecular Docking Study
- Abstract
- Nitrites and nitrates are commonly used in meat products to extend shelf life, stabilize color, and inhibit microbial growth. However, they can react with amines and amides, forming carcinogenic compounds. Essential oils are being considered as a natural replacement, but their use in the food industry is limited due to instability, volatility, and water insolubility factors. One solution is to encapsulate or interact the oils with other molecules. In this research, we examined the effective role of B12N12 in interacting with terpinen-4-ol and linalool oils as a stabilizer and nanocarrier for their potential application in the food industry, utilizing density functional calculations (DFT) in both gas and water phases. The adsorption energy values and thermodynamic parameters indicated that the oils adsorb onto the B12N12 cage through a chemisorption process. This process is exothermic and involves the formation of a partial covalent bond (B–O) between the cage and the oils. These findings suggest that the B12N12 cage effectively stabilizes and carries the oils. The vibrational frequency and quantum molecular descriptors (QMDs) calculations suggested that the terpinen-4-ol–B12N12 and linalool–B12N12 complexes are stable. Additionally, the solvation energy values, along with notable alterations in the polarity of the complexes, indicated the potential of the B12N12 cage as an effective solubilizer for the oils in water. The analysis using atoms in molecules (AIM) indicated that the interaction between the oils and the cage involves a partial covalent bond. Additionally, molecular electrostatic potential (MEP), Mulliken population analysis (MPA), and UV-Vis spectra for the compounds were computed. The antimicrobial effectiveness of terpinen-4-ol, linalool, terpinen-4-ol–B12N12, and linalool–B12N12 compounds against Escherichia coli (PDB ID: 4WUB) and v (PDB ID: 3VSL) bacteria was investigated using molecular docking techniques. The calculations indicated that terpinen-4-ol and linalool oils demonstrate higher binding affinities in comparison to terpinen-4-ol–B12N12 and linalool–B12N12 compounds when interacting with the 4WUB and 3VSL receptors. The results suggest that terpinen-4-ol and linalool oils, when combined with B12N12, have the potential to serve as natural substitutes for nitrites and nitrates in meat products.
- Scientific Type
- غير معروف
- Journal volume
- article in press
- Collaboration type
- مشترك
- Publish Date
- August 13, 2024
- Participated Universities (Publication)
-
Alnoor University
- Scopus status
- In Scopus
- Scopus index year
- 2 024
- Scopus quarter
- 2
- Scopus citation score
- 2.799999952
- Clarivate status
- In Clarivate
- Clarivate index year
- 2 024
- Clarivate impafact
- 1.600000024
- Pub. Med. status
- Not In PubMed
- Author (Publication)
- امنة داؤود سليمان محمد
- Journal (Publication)
-
Russian Journal of Inorganic Chemistry
- Publisher (Publication)
- Pleiades Publishing
- ISSN
- 0036-0236
- Country (Publication)
-
Russian
- Country type
- عالمية
- College (Publication)
-
College of Health and Medical Technologies
- Departement (Publication)
-
Department of Optics Techniques
- Resource class
- Publication
- Item sets
- Publications