Item
Publication
Novel magnetically separable g-C3N4/TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM
- Title
- Novel magnetically separable g-C3N4/TiO2/CuFe2O4 photocatalyst for efficient degradation of tetracycline under visible light irradiation: Optimization of process by RSM
- Abstract
- Herein, a novel magnetic visible-driven g-C3N4/TiO2/CuFe2O4 nanocomposite with excellent photocatalytic performance was successfully prepared and employed for photodegradation of tetracycline. Several analysis including X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), energy dispersive X-ray (EDX), Vibrating-Sample Magnetometer (VSM), and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV–Vis DRS) were performed in order to study the structural, optical, magnetic, as well as morphological properties of nanocomposite. The optical band gap of g-C3N4/TiO2/CuFe2O4 heterostructure was found to be red shifted to 2.45 eV from 3.15 eV for pure TiO2. Enhanced separation of photoinduced electron-hole pairs and enhanced visible light absorption capacity of nanocomposite lead to a maximum tetracycline photodegradation efficiency. Response surface methodology (RSM) was used to investigate the influence four independent variables, including initial photocatalyst dosage (7–14 g/L), TC concentration (20–30 ppm), solution pH (5.5–7.5), and irradiation time (20–40 min), and optimize the TC degradation efficiency. The g-C3N4/TiO2/CuFe2O4 nanocomposite was able to separate and recycle easily using an external magnetic field, and the results of reusability was shown its high stability after 5 cycles. Active species trapping experiments suggested that holes and hydroxyl radicals played a crucial role in the TC degradation process. Finally, a potential photocatalytic mechanism for photodegradation of TC was proposed.
- Scientific Type
- غير معروف
- Journal volume
- Volume 28, Issue 3
- Collaboration type
- مشترك
- Publish Date
- May 1, 2024
- Participated Universities (Publication)
-
Alnoor University
- Scopus status
- In Scopus
- Scopus index year
- 2 024
- Scopus quarter
- 1
- Scopus citation score
- 8.800000191
- Clarivate status
- In Clarivate
- Clarivate index year
- 2 024
- Clarivate impafact
- 5.599999905
- Pub. Med. status
- Not In PubMed
- Author (Publication)
-
طلال عزيز قاسم عبدالله
- Journal (Publication)
-
Journal of Saudi Chemical Society
- Publisher (Publication)
-
Elsevier
- ISSN
- 1319-6103
- Country (Publication)
-
Saudi Arabia
- Country type
- عربية
- College (Publication)
-
College of Health and Medical Technologies
- Departement (Publication)
-
Department of Medical laboratories techniques
- Media
-
Academic paper